Skip to main content
Log in

Extrusion of a solvated polymer into a moving viscous medium allows generation of continuous polymer nanofibers via hydrodynamic focusing

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Continuous, small-diameter polymer fibers may be fabricated by a method that involves injecting a solvated polymer into a highly viscous moving medium through a microaperture. The extruded fiber moves in a predictable spiral path and is collected around a spinning mandrel that also serves to pull the extruded fiber away from the aperture. In this study, fibers as small as 400 nm diameter were observed, but there was no indication that the experiments reported here have achieved the smallest structures possible by this technique. Video microscopy experiments revealed significant fiber diameter reduction in close proximity to the point of precursor injection via hydrodynamic focusing. This occurred due to flow mismatch between the precursor and surrounding media. This effect may be the dominant draw-down mechanism in a process that can produce truly continuous nanofiber. This method is capable of generating fibers from precursors with viscosities that would render them unspinnable by any other known method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).

    CAS  Google Scholar 

  2. S. Megelski, J.S. Stephens, D.B. Chase, and J.F. Rabolt: Micro- and nano-structured surface morphology on electrospun polymer fibers. Macromolecules 35, 8456 (2002).

    Article  CAS  Google Scholar 

  3. D. Li and Y. Xia: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. document No. 10.1021/nl049590f.

  4. C. Brinker and G. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA; London, 1990).

    Google Scholar 

  5. S.F. Fennessey and R.J. Farris: Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yams. Polymer 45, 4217 (2004).

    Article  CAS  Google Scholar 

  6. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, and P. Willis: Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15, 1161 (2003).

    Article  CAS  Google Scholar 

  7. High-Speed Fiber Spinning: Science and Engineering Aspects, edited by A. Ziabicki and H. Kawai Krieger Publishing Co. (1991).

    Google Scholar 

  8. W.K. Son, J.H. Youk, T.S. Lee, and W.H. Park: The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45, 2959 (2004).

    Article  CAS  Google Scholar 

  9. Y. Dzenis: Spinning continuous fibers for nanotechnology. Science 304, 1917 (2004).

    Article  CAS  Google Scholar 

  10. I.G. Loscertales, A. Barrero, M. Marquez, R. Spretz, R. Velarde-Ortiz, and G. Larsen: Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126, 5376 (2004).

    Article  CAS  Google Scholar 

  11. D. Li, A. Babel, S.A. Jenekhe, Y. Xia, D. Li, A. Babel, S.A. Jenekhe, and Y. Xia: Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv. Mater. 16, 2062 (2004).

    Article  CAS  Google Scholar 

  12. M.M. Hohman, M. Shin, G. Rutledge, and M.P. Brenner: Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13, 2201 (2001).

    Article  CAS  Google Scholar 

  13. A. Theron, E. Zussman, and A.L. Yarin: Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12, 384 (2001).

    Article  Google Scholar 

  14. D. Li, Y. Wang, and Y. Xia: Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16, 361 (2004).

    Article  Google Scholar 

  15. H. Varghese, S.S. Bhagawan, S.S. Rao, and S. Thomas: Morphology, mechanical and viscoelastic behavior of blends of nitrile rubber and ethylene-vinyl acetate copolymer. Eur. Polym. J. 31 (10), 957 (1995).

    Article  CAS  Google Scholar 

  16. O. Evstatiev, M. Evstatiev, S. Fakirov, and K. Friedrich: Manufacturing and characterization of microfibrillar reinforced composites from liquid crystalline polymers and poly(phenylene ether). Plast., Rubbers Compos. 33 (8), 353 (2004).

    Article  CAS  Google Scholar 

  17. J.Y. Kim, S.H. Kim, and T. Kikutani: Fiber property and structure development of polyester blend fibers reinforced with a thermotropic liquid-crystal polymer, J. Polym. Sci. Part B: Polym. Phys. 42, 395 (2004).

    Article  CAS  Google Scholar 

  18. J.B. Faisant, A. Ait-Kadi, M. Bousmina, and L. Deschenes: Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer 39, 533 (1998).

    Article  CAS  Google Scholar 

  19. C. Lacroix, M. Grmela, and P.J. Carreau: Morphological evolution of immiscible polymer blends in simple shear and elongational flows. J. Non-Newtonian Fluid Mech. 86, 37 (1999).

    Article  CAS  Google Scholar 

  20. M. Gorantla, S.E. Boone, M. El-Ashry, and D. Young: Continuous polymer nanofibers by extrusion into a viscous medium: A modified wet spinning technique. Appl. Phys. Lett. 88 2006.

  21. P. Doshi, I. Cohen, W.W. Zhang, M. Siegel, P. Howell, O.A. Basaran, and S.R. Nagel: Persistence of memory in drop breakup: The breakdown of universality. Science 302, 1185 (2003).

    Article  CAS  Google Scholar 

  22. I.G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A.M. Ganan-Calvo: Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695 (2002).

    Article  CAS  Google Scholar 

  23. S.L. Anna, N. Bontoux, and H.A. Stone: Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364 (2003).

    Article  CAS  Google Scholar 

  24. A. Ziabicki: Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing (John Wiley & Sons, 1976).

    Google Scholar 

  25. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, and D.A. Weitz: Monodisperse double emulsions generated from a microcapillary device. Science 308, 537 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorantla, M., Boone, S.E., Clark, C. et al. Extrusion of a solvated polymer into a moving viscous medium allows generation of continuous polymer nanofibers via hydrodynamic focusing. Journal of Materials Research 22, 989–993 (2007). https://doi.org/10.1557/jmr.2007.0115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0115

Navigation