Ionic doping effects on crystal structure and relaxation character in Bi0.5Na0.5TiO3 ferroelectric ceramics


The effects of ionic doping in Bi0.5Na0.5TiO3 (BNT) ceramics were investigated. Pure and doped BNT samples containing 0 to 16 at.% Ba2+ and 0 to 1.0 at.% Ce4+ were synthesized at 1135 to 1200 °C for 2 h in ambient atmosphere. Temperature dependences of dielectric properties were analyzed. These results suggest that Ba2+ and Ce4+ replace the ions in A and B sites of perovskite structures, and the lattice structure is altered. The component differences of each crystal domain lead to variance of phase transition temperature, which enhances the relaxation character in BNT ceramics, and the dielectric properties were consequently improved.

This is a preview of subscription content, access via your institution.


  1. 1.

    X.Z. Jing, Y.X. Li, and Q.R. Yin: Hydrothermal synthesis of Na0.5Bi0.5TiO3 fine powders. Mater. Sci. Eng., B 99, 506 (2003).

    Article  Google Scholar 

  2. 2.

    Z.P. Cao, A.L. Ding, X.Y. He, W.X. Cheng, and P.S. Qiu: Optical properties of BNT thin films grown on Pt/Ti/SiO2/Si (1 0 0) substrates by a CSD processing. J. Cryst. Growth 270, 168 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    J.R. Gomah-Pettry, S. Senda, P. Marchet, and J.P. Mercurio: Sodium-bismuth titanate based lead-free ferroelectric materials. J. Eur. Ceram. Soc. 24, 1165 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    S. Senda and J.P. Mercurio: Relaxor behaviour of low lead and lead free ferroelectric ceramics of the Na0.5Bi0.5TiO3-PbTiO3 and Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 systems. J. Eur. Ceram. Soc. 21, 1333 (2001).

    Article  Google Scholar 

  5. 5.

    H. Nagata and T. Takenaka: Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 21, 1299 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Y.H. Lin, S.J. Zhao, N. Cai, J.B. Bo, X.S. Zhou, and C.W. Nan: Effects of doping Eu2O3 on the phase transformation and piezoelectric properties of Bi0.5Na0.5TiO3-based ceramics. Mater. Sci. Eng., B 99, 449 (2003).

    Article  Google Scholar 

  7. 7.

    T. Kimura, T. Takahashi, T. Tani, and Y. Saito: Preparation of crystallographically textured Bi0.5Na0.5-BaTiO3 ceramics by reactive-templated grain growth method. Ceram. Int. 30, 1161 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    A.N. Soukhojak, H. Wang, G.W. Farrey, and Y.M. Chiang: Superlattice in single crystal barium-doped sodium bismuth titanate. J. Phys. Chem. Solids 61, 301 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    T. Takenaka, K. Maruyama, and K. Sakaya: (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 9B (1991).

    Article  Google Scholar 

  10. 10.

    Y. Chiang, G.W. Farrey, and A.N. Soukhojak: Lead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family. Appl. Phys. Lett. 73, 25 (1988).

    Google Scholar 

  11. 11.

    H. Yilmaz, G.L. Messing, and S.T. Mckinstry: (Reactive) Templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2 TiO3-BaTiO3) ceramics-I processing. J. Electroceram. 11, 3 (2003).

    Google Scholar 

  12. 12.

    Q. Xu, S.T. Chen, W. Chen, S.J. Wu, J.H. Lee, J. Zhou, H.J. Sun, and Y.M. Li: Structure, piezoelectric properties and ferroelectric properties of (Na0.5Ti0.5)w1−xBaxTiO3 system. J. Alloys Compd. 381, 221 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    B.J. Chu, D.R. Chen, G.R. Li, and Q.R. Yin: Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics. J. Eur. Ceram. Soc. 22, 2115 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    E. Sentürk: Dielectric characteristics of a Ce3+-doped Sr0.61Ba0.39Nb2O6 single crystal with Cole-Cole plots technique. J. Solid State Chem. 177, 1508 (2004).

    Article  Google Scholar 

  15. 15.

    J. Fousek and L.E. Cross: Domain-related problem of ferroelectric ceramics. Ceram. Int. 30, 1169 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    L.T. Li: Development of ferroelectric relaxor ceramics. J. Chin. Ceram. Soc. 20, 476 (1992).

    CAS  Google Scholar 

  17. 17.

    N.X. Zhang, Z.L. Gui, and L.T. Li: Non-destructive investigation of microstructure evolution due to ferroelectric fatigue in PLZT ceramics. Mater. Lett. 56, 244 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    P. Pookmanee, G. Rujijanagul, S. Ananta, R.B. Heimann, and S. Phanichphant: Effect of sintering temperature on microstructure of hydrothermally prepared bismuth sodium titanate ceramics. J. Eur. Ceram. Soc. 24, 517 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    S.B. Cho, J.S. Noh, M.M. Lencka, and R.E. Riman: Low temperature hydrothermal synthesis and formation mechanism of lead titanate (PbTiO3) particles using tetramethylammonium hydroxide: Thermodynamic modelling and experimental verification. J. Eur. Ceram. Soc. 23, 2323 (2003).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dan Shan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shan, D., Qu, Y. & Song, J. Ionic doping effects on crystal structure and relaxation character in Bi0.5Na0.5TiO3 ferroelectric ceramics. Journal of Materials Research 22, 730–734 (2007).

Download citation