Skip to main content
Log in

Corrosion and related mechanical properties of bulk metallic glasses

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The review of corrosion performance of a number of alloy systems documents several metallic glasses with corrosion resistance superior to that of crystalline metals. In other cases, the metallic glasses do not have superior corrosion resistance. The nature of corrosion resistance of the metallic glasses is often directly related to the development of a passive film (protective layer) on the reactive alloy substrate, increased durability of the passive film, or enhanced resistance to localized corrosion where the passive film is broken or damaged. Potential mechanical/environmental degradation processes include stress-corrosion cracking, corrosion fatigue, various forms of hydrogen damage, wear, and abrasion. The availability of bulk metallic glasses in significant three-dimensional sizes will stimulate important work in these areas that will enhance the fundamental understanding of the corrosion behavior and mechanical interactions and develop design guidelines and materials properties database for designers and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Scully and A. Lucente: Corrosion of amorphous metals. American Society of Metals 13B, 476 (2005).

    Google Scholar 

  2. P. Duwez: Structure and properties of alloys rapidly quenched from the liquid state. ASM Trans. Quarterly 60, 606 (1967).

    CAS  Google Scholar 

  3. Y.H. Kim, A. Inoue, and T. Masumoto: Ultrahigh tensile strengths of Al88Y2Ni9M1 (M = Mn or Fe) amorphous alloys containing finely dispersed fcc-Al Particles. Mater. Trans., JIM 31, 747 (1990).

    CAS  Google Scholar 

  4. H.S. Chen: Metallic glasses update, in Micromechanics of Advanced Materials: A Symposium in Honor of Professor James Li’s 70th Birthday, edited by S.N.G Chu, P.K. Liaw, R.J. Arsenault, K. Sadananda, K.S. Chan, W.W. Gerberich, C.C. Chau and T.M. Kung (The Minerals, Metals and Materials Society, Warrendale, PA, 1995), pp. 295–300.

  5. A. Inoue: Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng., A 375–377, 16 (2004).

    Google Scholar 

  6. W.L. Johnson: Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225–227, 35 (1996).

    Google Scholar 

  7. A. Inoue, K. Ohtera, and T. Masumoto: New amorphous Al–Y, Al–La and Al–Ce alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27, L.736 (1988).

    Google Scholar 

  8. A. Gebert, U.K. Mudali, J. Eckert, and L. Schultz: Electrochemical reactivity of zirconium-based bulk metallic glasses. (Mater. Res. Soc. Symp. Proc. 806, Warrendale, PA, 2004), p. 369.

    Google Scholar 

  9. S. Pang, T. Zhang, K. Asami, and A. Inoue: Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance. Corros. Sci. 44, 1847 (2002).

    CAS  Google Scholar 

  10. S. Pang, T. Zhang, K. Asami, and A. Inoue: Bulk glassy Ni(Co–)Nb–Ti–Zr alloys with high corrosion resistance and high strength. Mater. Sci. Eng., A 375–377, 368 (2004).

    Google Scholar 

  11. A. Gebert, K. Buchholz, A.M. El-Aziz, and J. Eckert: Hot water corrosion behaviour of Zr–Al–Cu–Ni bulk metallic glass. Mater. Sci. Eng., A 316, 60 (2001).

    Google Scholar 

  12. A. Gebert, U. Wolff, A. John, and J. Eckert: Corrosion behaviour of Mg65Y10Cu25 metallic glass. Scripta Mater. 43, 279 (2000).

    CAS  Google Scholar 

  13. K. Asami, C.L. Qin, T. Zhang, and A. Inoue: Effect of additional elements on the corrosion behavior of a Cu–Zr–Ti bulk metallic glass. Mater. Sci. Eng., A 375–377, 235 (2004).

    Google Scholar 

  14. J.E. Sweitzer, J.R. Scully, R.A. Bley, and J.W.P Hsu: Nanocrystalline Al87Ni8.7Y4.3 and Al90Fe5Gd5 alloys that retain the localized corrosion resistance of the amorphous state. Electrochem. Solid-State Lett. 2, 267 (1999).

    CAS  Google Scholar 

  15. V. Schroeder and R.O. Ritchie: Stress-corrosion fatigue-crack growth in a Zr-based bulk amorphous metal. Acta Mater. 54, 1785 (2006).

    CAS  Google Scholar 

  16. M. Naka, K. Hashimoto, and T. Masumoto: Corrosion resistance of amorphous iron alloys containing chromium. J. Jpn. Inst. Metals 38, 835 (1974).

    CAS  Google Scholar 

  17. M. Naka, K. Hashimoto, and T. Masumoto: High corrosion resistance of chromium-bearing amorphous iron alloys in neutral and acidic solutions containing chloride. Corrosion 32, 146 (1976).

    CAS  Google Scholar 

  18. A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, and L. Schultz: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).

    Google Scholar 

  19. M.M. Lohrengel: Thin anodic oxide layers on aluminium and other valve metals: High-field regime. Mater. Sci. Eng. R11, 243 (1993).

    CAS  Google Scholar 

  20. U.K. Mudali, S. Scudino, U. Kühn, J. Eckert, and A. Gebert: Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acids. Scripta Mater. 50, 1379 (1994).

    Google Scholar 

  21. U. Köster, D. Zander, Triwikantoro, A. Rüdiger, and L. Jastrow: Environmental properties of Zr-based metallic glasses and nanocrystalline alloys. Scripta Mater. 44, 1649 (2001).

    Google Scholar 

  22. A. Dhawan, K. Raetzke, F. Faupel, and S. Sharma: Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 by thermogravimetric analyser. Mater. Sci. 24, 281 (2001).

    CAS  Google Scholar 

  23. S. Hiromoto, A.P. Tsai, M. Sumita, and T. Hanawa: Corrosion behaviour of Zr65Al7.5Ni10Cu17.5 amorphous alloy for biomedical use. Mater. Trans., JIM 42, 656 (2001).

    CAS  Google Scholar 

  24. U.K. Mudali, S. Baunack, J. Eckert, L. Schultz, and A. Gebert: Pitting corrosion of bulk glass-forming zirconium-based alloys. J. Alloys Compd. 377, 290 (2004).

    Google Scholar 

  25. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael, and J.L. Wright: Localized corrosion behaviour of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 (2002).

    CAS  Google Scholar 

  26. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Comparison of the corrosion behaviour of a bulk amorphous metal, Zr41.2Ti13.8Ni10Cu12.5Be22.5, with its crystallized form. Scripta Mater. 38, 1481 (1998).

    CAS  Google Scholar 

  27. M.L. Morrison, R.A. Buchanan, A. Peker, W.H. Peter, J.A. Horton, and P.K. Liaw: Cyclic anodic polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12, 1177 (2004).

    CAS  Google Scholar 

  28. A. Gebert, J. Eckert, and L. Schultz: Effect of oxygen on the phase formation and thermal stability of slowly cooled Zr65Al7.5Ni10Cu17.5 metallic glass. Acta Mater. 46, 5475 (1998).

    CAS  Google Scholar 

  29. V.R. Raju, U. Kühn, U. Wolff, F. Schneider, J. Eckert, R. Reiche, and A. Gebert: Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater. Lett. 57, 173 (2002).

    CAS  Google Scholar 

  30. S. Pang, T. Zhang, H. Kimura, K. Asami, and A. Inoue: Corrosion behaviour of Zr–(Nb)–Al–Ni–Cu glassy alloys. Mater. Trans., JIM 41, 1490 (2000).

    CAS  Google Scholar 

  31. A. Gebert, U. Kuehn, S. Baunack, N. Mattern, and L. Schultz: Pitting corrosion of zirconium-based bulk glass-matrix composites. Mater. Sci. Eng., A 415, 242 (2006).

    Google Scholar 

  32. N. Mattern and A. Gebert: Hydrogenation of Zr60Ti2Cu20Al10Ni8 bulk metallic glass. Appl. Phys. Lett. 83, 1134 (2003).

    CAS  Google Scholar 

  33. A. Gebert, N. Ismail, U. Wolff, M. Uhlemann, J. Eckert, and L. Schultz: Effects of electrochemical hydrogenation of Zr-based alloys with high glass-forming ability. Intermetallics 10, 1207 (2002).

    CAS  Google Scholar 

  34. N. Eliaz, D. Eliezer, E. Abramov, D. Zander, and U. Köster: Hydrogen evolution from Zr-based amorphous and quasicrystalline alloys. J. Alloys Compd. 305, 272 (2000).

    CAS  Google Scholar 

  35. N. Ismail, M. Uhlemann, A. Gebert, and J. Eckert: Hydrogenation and its effect on the crystallisation behaviour of Zr55Cu30Al10Ni5 metallic glass. J. Alloys Compd. 298, 146 (2000).

    CAS  Google Scholar 

  36. N. Ismail, A. Gebert, M. Uhlemann, J. Eckert, and L. Schultz: Effect of hydrogen on Zr65Cu17.5Al7.5Ni10 metallic glass. J. Alloys Compd. 314, 170 (2001).

    CAS  Google Scholar 

  37. G.B. Shan, Y.W. Wang, W.Y. Chu, J.X. Li, and X.D. Hui: Hydrogen damage and delayed fracture in bulk metallic glass. Corros. Sci. 47, 2731 (2005).

    CAS  Google Scholar 

  38. M. Hasegawa, K. Kotani, S. Yamaura, H. Kato, I. Kodama, and A. Inoue: Hydrogen-induced internal friction of Zr-based bulk glassy alloys in a rod shape above 90 K. J. Alloys Compd. 365, 221 (2004).

    CAS  Google Scholar 

  39. D. Suh and R.H. Dauskardt: Hydrogen effects on the mechanical and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Scripta Mater. 42, 233 (2000).

    CAS  Google Scholar 

  40. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Effect of aqueous environment on fatigue-crack propagation behaviour in a Zr-based bulk amorphous metal. Scripta Mater. 40, 1057 (1999).

    CAS  Google Scholar 

  41. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: A comparison of the mechanisms of fatigue-crack propagation behavior in a Zr-based bulk amorphous metal in air and an aqueous chloride solution. Mater. Sci. Eng., A 317, 145 (2001).

    Google Scholar 

  42. K. Hashimoto: In pursuit of new corrosion-resistant alloys. Corrosion 58, 715 (2002).

    CAS  Google Scholar 

  43. K. Hashimoto, T. Masumoto, and S. Shimodaira: Passivity and its breakdown on iron and iron-based alloys, in Proc. Japan-U.S. Seminar, edited by R.W. Staehle and H. Okada (NACE International, Houston, TX, 1975), p. 34.

  44. K. Hashimoto, K. Kobayashi, K. Asami, and T. Masumoto: Corrosion-resistant amorphous alloys in hot concentrated hydrochloric acids. Metallic corrosion, in Proc. 8th Int. Cong. Metallic Corrosion, (DECHEMA, Frankfort, Germany, 1981), p. 70.

    Google Scholar 

  45. S.J. Pang, T. Zhang, K. Asami, and A. Inoue: Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 50, 489 (2002).

    CAS  Google Scholar 

  46. J. Shen, Q. Chen, J. Sun, H. Fan, and G. Wang: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005).

    Google Scholar 

  47. J.C. Farmer, D.J. Branagan, C.A. Blue, J.D.K Rivard, L.F. Aprigliano, N. Yang, J.H. Perepezko, and M.B. Beardsley: Corrosion characterization of iron-based high-performance amorphous-metal thermal-spray coatings, in Proc. ASME PVP: Pressure Vessels & Piping Division Conference, (ASME, New York, NY, 2005).

    Google Scholar 

  48. J.C. Farmer, J.J. Haslam, S.D. Day, T. Lian, R. Rebak, N. Yang, and L. Aprigliano: Corrosion resistance of iron-based amorphous metal coatings, in Proc. ASME PVP: Pressure Vessels and Piping Division Conference, (ASME, New York, NY, 2006).

    Google Scholar 

  49. T.M. Devine: Anodic polarization and localized corrosion behavior of amorphous Ni35Fe30Cr15P14B6 in near-neutral and acidic chloride solutions. J. Electrochem. Soc. 134, 38 (1977).

    Google Scholar 

  50. R.B. Diegle: Crevice corrosion of glassy Fe–Ni–Cr–P–B alloys. Corrosion 36, 362 (1980).

    CAS  Google Scholar 

  51. I.B. Singh, R.D.K Misra, R.S. Chaudhary, and D. Akhtar: Anodic polarization behavior of nickel-niobium (Ni60Nb40) and nickel-chromium-niobium (Ni55Cr5Nb40) glasses. Mater. Sci. Eng. 92, 173 (1987).

    CAS  Google Scholar 

  52. H.B. Yao, Y. Li, A. Lee, J. Chai, and J.S. Pan: The alloying effect of Ni on the corrosion behavior of melt-spun Mg–Ni ribbons. Electrochim. Acta 46, 2649 (2001).

    CAS  Google Scholar 

  53. A. Kawashima, H. Habazaki, and K. Hashimoto: Highly corrosion-resistant Ni-based bulk amorphous alloys. Mater. Sci. Eng., A 304–306, 753 (2001).

    Google Scholar 

  54. H. Habazaki, H. Ukai, K. Izumiya, and K. Hashimoto: Corrosion behaviour of amorphous Ni–Cr–Nb–P–B bulk alloys in 6M HCl solution. Mater. Sci. Eng., A 318, 77 (2001).

    Google Scholar 

  55. K. Hashimoto, H. Shinomiya, A. Nakazawa, and K. Asami: Spontaneous passivation of amorphous bulk Ni–Cr–Mo–Ta–Nb–P alloys in concentrated HCl, in Passivity 9 Conference Proceedings, (2005), pp. 65–70.

    Google Scholar 

  56. H. Katagiri, S. Meguro, M. Yamasaki, H. Habazaki, T. Sato, A. Kawashima, K. Asami, and K. Hashimoto: Synergistic effect of three corrosion-resistant elements on corrosion resistance in concentrated hydrochloric acid. Corros. Sci. 43, 171 (2001).

    CAS  Google Scholar 

  57. K. Hashimoto, H. Katagiri, H. Habazaki, J.M. Yamasaki, A. Kawashima, K. Izumiya, H. Ukai, K. Asami, and S. Meguro: Extremely corrosion-resistant bulk amorphous alloys. Mater. Sci. Forum 377, 1 (2001).

    CAS  Google Scholar 

  58. R.B. Diegle: Versatile electrochemical cell for studying corrosion in aerosol containers. Corrosion 35, 250 (1979).

    CAS  Google Scholar 

  59. C.A. Pampillo: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 (1975).

    CAS  Google Scholar 

  60. A. Kawashima, K. Hashimoto, and T. Masumoto: Hydrogen embrittlement of amorphous Fe–Cr–Mo alloys. Corrosion 36, 577 (1980).

    CAS  Google Scholar 

  61. R.F. Sandenbergh and R.M. Latanision: The stress corrosion cracking of a glassy Fe32Ni36Cr14P12B6 alloy. Corrosion 41, 369 (1985).

    CAS  Google Scholar 

  62. A. Kawashima, K. Hashimoto, and T. Masumoto: Stress-corrosion cracking of amorphous iron base alloys. Corros. Sci. 16, 935 (1976).

    Google Scholar 

  63. R.L. Zeller and U. Landau: The effect of hydrogen on the ductility of electrodeposited Ni–P amorphous alloys. J. Electrochem. Soc. 137, 1107 (1990).

    CAS  Google Scholar 

  64. R.M. Latanision, J.C. Turn, and C.R. Compeau: The corrosion resistance of glassy metals, in Proceedings of the Third International Conference on Mechanical Behavior of Metals, (1979), pp. 475–483.

    Google Scholar 

  65. M. Hara and R.M. Latanision: The effect of aging on the diffusivity of hydrogen in amorphous Ni–Si–B alloy. Corros. Sci. 37, 865 (1995).

    CAS  Google Scholar 

  66. A. Inoue, A. Kitamura, and T. Masumoto: The effect of aluminum on mechanical-properties and thermal-stability of (Fe,Co,Ni)–Al–B ternary amorphous-alloys. J. Mater. Sci. 16, 1895 (1981).

    CAS  Google Scholar 

  67. A. Inoue, Y. Bizen, H.M. Kimura, M. Yamamoto, A.P. Tsai, and T. Masumoto: Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing. J. Mater. Sci. Lett. 6, 811 (1987).

    CAS  Google Scholar 

  68. R.O. Suzuki, Y. Komatsu, K.E. Kobayashi, and P.H. Shingu: Formation and crystallization of Al–Fe–Si amorphous alloys. J. Mater. Sci. 18, 1195 (1983).

    CAS  Google Scholar 

  69. A. Inoue, M. Yamamoto, H.M. Kimura, and T. Masumoto: Ductile aluminium-base amorphous alloys with two separate phases. J. Mater. Sci. Lett. 6, 194 (1987).

    CAS  Google Scholar 

  70. A.P. Tsai, A. Inoue, and T. Masumoto: Formation of metal-metal type aluminum-based amorphous alloys. Metall. Trans. 19A, 1369 (1988).

    CAS  Google Scholar 

  71. A.P. Tsai, A. Inoue, and T. Masumoto: Ductile Al–Ni–Zr amorphous alloys with high mechanical strength. J. Mater. Sci. Lett. 7, 805 (1988).

    CAS  Google Scholar 

  72. A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto: New amorphous alloys with good ductility in Al–Y–M and Al–La–M (M = Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys. 27, L.280 (1988).

    Google Scholar 

  73. A. Inoue, K. Ohtera, and T. Masumoto: New amorphous alloys with good ductility in Al–Ce–M (M = Nb, Fe, Co, Ni, or Cu) systems. Jpn. J. Appl. Phys. 27, L.1796 (1988).

    Google Scholar 

  74. A. Inoue, K. Ohtera, T. Zhang, and T. Masumoto: New amorphous Al–Ln (Ln = Pr, Nd, Sm or Gd) alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27, L.1583 (1988).

    Google Scholar 

  75. A. Inoue, T. Zhang, K. Kita, and T. Masumoto: On the nature of the quasicrystalline phase in rapidly solidified Al–Co–Si alloys. Mater. Trans., JIM 30, 870 (1989).

    CAS  Google Scholar 

  76. H.Y. Hsieh, B.H. Toby, T. Egami, Y. He, S.J. Poon, and G.J. Shiflet: Atomic-structure of amorphous Al90Fex Ce10−x. J. Mater. Res. 5, 2807 (1990).

    CAS  Google Scholar 

  77. A.N. Mansour, C.P. Wong, and R.A. Brizzolara: Atomic structure of amorphous Al100−2x CoxCex (x = 8, 9, and 10) and Al80Fe10Ce10 alloys: An XAFS study. Phys. Rev. B 50, 12401 (1994).

    CAS  Google Scholar 

  78. L. Zhang, Y.S. Wu, X.F. Bian, H. Li, W.M. Wang, J.G. Li, and N. Lun: Origin of the prepeak in the structure factors of liquid and amorphous Al–FevCe alloys. J. Phys. Condens. Matter 11, 7959 (1999).

    Google Scholar 

  79. F.Q. Guo, S.J. Enouf, S.J. Poon, and G.J. Shiflet: Formation of ductile Al-based metallic glasses without rare-earth elements. Philos. Mag. Lett. 81, 203 (2001).

    CAS  Google Scholar 

  80. J.E. Sweitzer, G.J. Shiflet, and J.R. Scully: Localized corrosion of Al90Fe5Gd5 and Al87Ni8.7Y4.3 alloys in the amorphous, nanocrystalline, and crystalline states: Resistance to micrometer-scale pit formation. Electrochim. Acta 48, 1223 (2003).

    CAS  Google Scholar 

  81. A. Lucente, G.J. Shiflet, and J.R. Scully: Localized corrosion of an Al90Fe5Gd5 Alloy as a function of devitrfication, in Critical Factors in Localized Corrosion IV, A Symposium in Honor of the 65th Birthday of Hans Bohni, (ECS Proceedings V, 2002), pp. 295–309.

    Google Scholar 

  82. A.M. Lucente, G.J. Shiflet, and J.R. Scully: Pit initiation on partially devitrified glassy alloys, in ECS Transactions, 206th Meeting of the Electrochemical Society, Inc. Third International Symposium on Pits and Pores: Formation, Properties, and Significance for Advanced Materials, (2004).

    Google Scholar 

  83. H.B. Yao, H. Li, and A. Wee: Corrosion behavior of melt-spun Mg65Ni20Nd15 and Mg65Cu25Y10 metallic glasses. Electrochim. Acta 48, 2641 (2003).

    CAS  Google Scholar 

  84. A. Gebert, B. Khorkounov, U. Wolff, C. Mickel, M. Uhlemann, and L. Schultz: Stability of rapidly quenched and hydrogenated Mg–Ni–Y and Mg–Cu–Y alloys in extreme alkaline medium. J. Alloys Compd. 419, 319 (2006).

    CAS  Google Scholar 

  85. M. Savyak, S. Hirnyj, H.D. Bauer, M. Uhlemann, J. Eckert, L. Schultz, and A. Gebert: Electrochemical hydrogenation of Mg65Cu25Y10 metallic glass. J. Alloys Compd. 364, 229 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe H. Payer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scully, J.R., Gebert, A. & Payer, J.H. Corrosion and related mechanical properties of bulk metallic glasses. Journal of Materials Research 22, 302–313 (2007). https://doi.org/10.1557/jmr.2007.0051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0051

Navigation