Skip to main content
Log in

Fatigue behavior of an Fe48Cr15Mo14Er2C15B6 amorphous steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Four-point-bend fatigue experiments were conducted on the Fe48Cr15Mo14Er2C15B6 bulk metallic glass (BMG), amorphous steel, under load control, employing an electrohydraulic machine, at a frequency of 10 Hz (using a sinusoidal waveform) with an R ratio of 0.1, where R = σmin.max.min. and σmax. are the applied minimum and maximum stresses, respectively). The test environment was laboratory air. Fe48Cr15Mo14Er2C15B6 exhibited a high fatigue-endurance limit (682 MPa), which is found to be greater than those of the Zr-based BMG, Al-alloy, and high-nitrogen steel. However, the stress versus number of fatigue cycles curve of Fe48Cr15Mo14Er2C15B6 has a significantly brittle fracture mode. Some fatigue cracks initiated from the inclusions or porosities, and the fatigue-crack propagation region was large. However, other cracks initiated from the outer tensile surface of the specimen, and the fatigue-crack propagation region was very small. The mechanisms of fatigue-crack initiation are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, B.L. Shen, A.R. Yavari, and A.L. Greer: Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si. J. Mater. Res. 18, 1487 (2003).

    Article  CAS  Google Scholar 

  2. V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, and G. Petculescu: Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Appl. Phys. Lett. 83, 1131 (2003).

    Article  CAS  Google Scholar 

  3. A. Inoue, T. Zhang, and A. Takeuchi: Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system. Appl. Phys. Lett. 71, 464 (1997).

    Article  CAS  Google Scholar 

  4. V. Ponnambalam, S.J. Poon, and G.J. Shiflet: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).

    Article  CAS  Google Scholar 

  5. Z.P. Lu, C.T. Liu, W.D. Porter, and J.R. Thomson: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).

    CAS  Google Scholar 

  6. V. Ponnambalam, S.J. Poon, and G.J. Shiflet: Fe-Mn-Cr-Mo-(Y, Ln)-C-B (Ln = Lanthanides) bulk metallic glasses as formable amorphous steel alloys. J. Mater. Res. 19, 3046 (2004).

    CAS  Google Scholar 

  7. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchana, C.T. Liu, and C.R. Brooks: Fatigue behavior of bulk-metallic glasses. Intermetallics 12, 885 (2004).

    CAS  Google Scholar 

  8. G.Y. Wang, P.K. Liaw, A. Peker, B. Yang, M.L. Benson, W. Yuan, W.H. Peter, L. Huang, A. Freels, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Fatigue behavior of Zr-Ti-Ni-Cu-Be bulk-metallic-glasses. Intermetallics 13, 429 (2005).

    CAS  Google Scholar 

  9. G.Y. Wang, P.K. Liaw, A. Peker, M. Freels, W.H. Peter, R.A. Buchanan, and C.R. Brooks: Comparison of fatigue behavior of a bulk metallic glass and its composite. Intermetallics 14, 1091 (2006).

    CAS  Google Scholar 

  10. C.J. Gilbert, J.M. Lippmann, and R.O. Ritchie: Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior. Scripta Mater. 38, 537 (1998).

    Article  CAS  Google Scholar 

  11. K.M. Flores, W.L. Johnson, and R.H. Dauskardt: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181 (2003).

    Article  CAS  Google Scholar 

  12. M. Benedetti, T. Bortolamedi, V. Fontanari, and F. Frendo: Bending fatigue behaviour of differently shot peened Al 6082 T5 alloy. Int. J. Fatigue 26, 889 (2004).

    Article  CAS  Google Scholar 

  13. M. Heitkemper, C. Bohne, A. Pyzalla, and A. Fischer: Fatigue and fracture behaviour of a laser surface heat treated martensitic high-nitrogen tool steel. Int. J. Fatigue 25, 101 (2003).

    Article  CAS  Google Scholar 

  14. H.S. Chen: Glassy metals. Rep. Prog. Phys. 43, 353 (1980).

    Article  Google Scholar 

  15. P.E. Donovan and W.M. Stobbs: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 (1981).

    Article  CAS  Google Scholar 

  16. P.S. Steif, F. Spaepen, and J.W. Hutchinson: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).

    Article  CAS  Google Scholar 

  17. Y. Leng and T.H. Courtney: Multiple shear band formation in metallic glasses in composites. J. Mater. Sci. 26, 588 (1991).

    Article  Google Scholar 

  18. C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans., A 29, 1811 (1998).

    Article  Google Scholar 

  19. P.A. Hess, B.C. Menzel, and R.H. Dauskardt: Fatigue damage in bulk metallic glass. II: Experiments. Scripta Mater. 54, 355 (2006).

    Article  CAS  Google Scholar 

  20. V. Schroeder and R.O. Ritchie: Stress-corrosion fatigue-crack growth in a Zr-based bulk amorphous metal. Acta Metall. 54, 1785 (2006).

    CAS  Google Scholar 

  21. Z.F. Zhang, J. Eckert, and L. Schultz: Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass. J. Mater. Res. 18, 456 (2003).

    CAS  Google Scholar 

  22. P.A. Hess and R.H. Dauskardt: Mechanisms of elevated temperature fatigue crack growth in Zr-Ti-Cu-Ni-Be bulk metallic glass. Acta Metall. 52, 3525 (2004).

    CAS  Google Scholar 

  23. K.M. Flores and R.H. Dauskardt: Fracture and deformation of bulk metallic glasses and their composites. Intermetallics 12, 1025 (2004).

    CAS  Google Scholar 

  24. H. Choi-Yimhoi-Yim, R. Busch, U. Köster, and W.L. Johnson: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).

    Google Scholar 

  25. H. Zhang, Z.G. Wang, K.Q. Qiu, Q.S. Zhang, and H.F. Zhang: Cyclic deformation and fatigue-crack propagation of a Zr-based bulk amorphous metal. Mater. Sci. Eng., A-Struct. 356, 173 (2003).

    Google Scholar 

  26. Z. Bian, G.L. Chen, G. He, and X.D. Hui: Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Mater. Sci. Eng., A-Struct. 316, 135 (2001).

    Google Scholar 

  27. J. C. Newman Jr., and I. S. Raju: Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads. NASA Technical Memorandum 85793.

  28. D.C. Qiao, P.K. Liaw, C. Fan, Y.H. Lin, G.Y. Wang, H. Choo, and R.A. Buchanan: Fatigue and fracture behavior of (Zr58Ni13.6Cu18Al10.4)99Nb1 bulk-amorphous alloy. Intermetallics 14, 1043 (2006).

    CAS  Google Scholar 

  29. P.A. Hess, S.J. Poon, G.J. Shiflet, and R.H. Dauskardt: Indentation fracture toughness of amorphous steel. J. Mater. Res. 20, 783 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Liaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, D.C., Wang, G.Y., Liaw, P.K. et al. Fatigue behavior of an Fe48Cr15Mo14Er2C15B6 amorphous steel. Journal of Materials Research 22, 544–550 (2007). https://doi.org/10.1557/jmr.2007.0047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0047

Navigation