Skip to main content
Log in

Observation of structural anisotropy in metallic glasses induced by mechanical deformation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have investigated atomic structure of a Fe81B13Si4C2 metallic glass after mechanical creep deformation. We determined the structure function and pair density function resolved for azimuthal angle using x-ray scattering and a two-dimensional detector. The results are analyzed by the spherical harmonics expansion, and are compared to the often-used simple analysis of the anisotropic pair density function determined by measuring the structure function along two directions with respect to the stress. We observed uniaxial structural anisotropy in a sample deformed during creep experiment. The observed macroscopic shear strain is explained in terms of local bond anisotropy induced by deformation at elevated temperature. The bond anisotropy is a “memory” of this deformation after load was removed. We showed that use of sine-Fourier transformation to anisotropic glass results in systematic errors in the atomic pair distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Klement, R.H. Willens, and P. Duwez: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869 (1960).

    Article  CAS  Google Scholar 

  2. A. Inoue, T. Zhang, and T. Masumoto: Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans., JIM 31, 177 (1990).

    Article  CAS  Google Scholar 

  3. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  4. X.H. Lin, W.L. Johnson, and W.K. Rhim: Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans. 38, 473 (1997).

    Article  CAS  Google Scholar 

  5. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  6. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  7. R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).

    Article  CAS  Google Scholar 

  8. Z. Bian, G. He, and G.L. Chen: Microstructure and mechanical properties of as-cast Zr52.5Cu17.9Ni14.6 Al10Ti5 bulky glass alloy. Scripta Mater. 43, 1003 (2000).

    Article  CAS  Google Scholar 

  9. T. Egami: Magnetic amorphous materials: Physics and technological applications. Rep. Prog. Phys. 47, 1601 (1984).

    Article  CAS  Google Scholar 

  10. M.L. Morrison, R.A. Buchanan, A. Peker, W.H. Peter, J.A. Horton, and P.K. Liaw: Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12, 1177 (2004).

    Article  CAS  Google Scholar 

  11. A. Kawashima, H. Habazaki, and K. Hashimoto: Highly corrosionresistant Ni-based bulk amorphous alloys. Mater. Sci. Eng., A 304–306, 753 (2001).

    Article  Google Scholar 

  12. Y. Saotome, T. Hatori, T. Zhang, and A. Inoue: Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state. Mater. Sci. Eng., A 304–306, 716 (2001).

    Article  Google Scholar 

  13. Y. Saotome, K. Itoh, T. Zhang, and A. Inoue: Superplastic nanoforming of Pd-based amorphous alloy. Scripta Mater. 44, 1541 (2001).

    Article  CAS  Google Scholar 

  14. T.G. Nieh, J. Wadsworth, C.T. Liu, G.E. Ice, and K.S. Chung: Extended plasticity in the supercooled liquid region of bulk metallic glasses. Mater. Trans. 42, 613 (2001).

    Article  CAS  Google Scholar 

  15. T. Egami and S.J.L Billinge: Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, Amsterdam, 2003).

    Book  Google Scholar 

  16. X. Qiu, J.W. Thompson, and S.J.L Billinge: PDFgetX2: A GUI-driven program to obtain the pair distribution function from x-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).

    Article  CAS  Google Scholar 

  17. P.F. Peterson, M. Gutmann, Th. Proffen, and S.J.L Billinge: PDFgetN: A user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. J. Appl. Crystallogr. 33, 1192 (2000).

    Article  CAS  Google Scholar 

  18. Y. Suzuki, J. Haimovich, and T. Egami: Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys. Rev. B 35, 2162 (1987).

    Article  CAS  Google Scholar 

  19. T. Egami, W. Dmowski, P. Kosmetatos, M. Boord, T. Tomida, E. Oikawa, and A. Inoue: Deformation induced bond orientational order in metallic glass. J. Non-Cryst. Solids 192–193, 591 (1995).

    Article  Google Scholar 

  20. P.J. Chupas, X. Qiu, J.C. Hanson, P.L. Lee, C.P. Grey, and S.J.L Billinge: Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Crystallogr. 36, 1342 (2003).

    Article  CAS  Google Scholar 

  21. H.F. Poulsen, J.A. Wert, J. Neuefeind, V. Honkimaki, and M. Daymond: Measuring strain distributions in amorphous materials. Nat. Mater. 4, 33 (2005).

    Article  CAS  Google Scholar 

  22. T.C. Hufnagel, R.T. Ott, and J. Almer: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 73, 064204 (2006).

    Article  Google Scholar 

  23. R.T. Ott, M.J. Kramer, M.F. Besser, and D.J. Sordelet: High-energy measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass. Acta Mater. 54, 2463 (2006).

    Article  CAS  Google Scholar 

  24. A.P. Hammersley: FIT2D: An introduction and overview. ESRF Internal Report, ESRF97HA02T (1997).

    Google Scholar 

  25. A.P. Hammersley, S.O. Svensson, and A. Thompson: Calibration and correction of spatial distortions in 2D detector systems. Nucl. Instr. Meth. A346, 312 (1994).

    Article  Google Scholar 

  26. G.S. Cargill III: Solid State Physics, Vol. 30, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1975), p. 227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojtek Dmowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmowski, W., Egami, T. Observation of structural anisotropy in metallic glasses induced by mechanical deformation. Journal of Materials Research 22, 412–418 (2007). https://doi.org/10.1557/jmr.2007.0043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0043

Navigation