Skip to main content
Log in

Coarsening kinetics of intermetallic precipitates in Ni75AlxV25−x alloys

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The precipitation kinetics of growth and coarsening of γ′(Ni3Al) and θ (Ni3V) in Ni75AlxV25−x alloys were investigated by microscopic phase-field simulation incorporated with elastic interactions. For the elastic interactions, γ′ aligned along the 〈001〉 direction and θ aligned along the [100] direction, which resulted in plate shape. For the lower (x < 4, at.%) and higher (x > 6) content regions, the growth of first precipitates was dominant at the initial stage and then coarsening was dominant, but the growth and coarsening proceeded simultaneously for the second precipitates. The growth and coarsening of γ′ and θ were dominant, respectively, at the initial and late stages for middle content regions. In addition, dynamic scaling was analyzed in the two-phase systems. It was shown that the dynamic scaling regimes were attained simultaneously at late-stage coarsening for γ′ and θ, despite the different precipitation order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nunomura, Y. Kaneno, H. Tsuda, and T. Takasugi: Phase relation and microstructure in multi-phase intermetallic alloys based on Ni3Al–Ni3Ti–Ni3V pseudo-ternary alloy system. Intermetallics 12, 389 (2004).

    Article  CAS  Google Scholar 

  2. A. Suzuki and M. Takeyama: Formation and morphology of Kurnakov type D022 compound in disordered face-centured cubic γ–(Ni,Fe) matrix alloys. J. Mater. Res. 21, 21 (2006).

    Article  CAS  Google Scholar 

  3. G. Muralidharan and H. Chen: Coarsening kinetics of coherent γ′ precipitates in ternary Ni-based alloys: The Ni–Al–Si system. Sci. Technol. Adv. Mater. 1, 51 (2000).

    Article  CAS  Google Scholar 

  4. A.C. Lund and P.W. Voorhees: The effects of elastic stress on coarsening in the Ni–Al system. Acta Mater. 50, 2085 (2002).

    Article  CAS  Google Scholar 

  5. D. Orlikowski, C. Sagui, A. Somoza, and C. Roland: Large-scale simulations of phase separation of elastically coherent binary alloy systems. Phys. Rev. B 59, 8646 (1999).

    Article  CAS  Google Scholar 

  6. M. Takeyama and M. Kikuchi: Eutectoid transformations accompanied by ordering. Intermetallics 6, 573 (1998).

    Article  CAS  Google Scholar 

  7. C. Pareige and D. Blavette: Simulation of the FCCFCC + L12 + DO22 kinetic reaction. Scripta. Mater. 44, 243 (2001).

    Article  CAS  Google Scholar 

  8. M. Tanimura, A. Hirata, and Y. Koyama: Kinetic process of the phase separation in the alloy Ni3Al0.52V0.48. Phys. Rev. B 70, 094111 (2004).

    Article  Google Scholar 

  9. R. Poduri and L.Q. Chen: Computer simulation of atomic ordering and compositional clustering in the pseudobinary Ni3Al–Ni3V system. Acta Mater. 46, 1719 (1998).

    Article  CAS  Google Scholar 

  10. L. Gránásy, T. Pusztai, T. Börzsönyi, G. Tóth, G. Tegze, J.A. Warren, and J.F. Douglas: Phase field theory of crystal nucleation and polycrystalline growth: A review. J. Mater. Res. 21, 309 (2006).

    Article  Google Scholar 

  11. J.A. Warren and B.T. Murray: Ostwald ripening and coalescence of a binary alloy in two dimensions using a phase-field model. Model. Simul. Mater. Sci. Eng. 4, 215 (1996).

    Article  CAS  Google Scholar 

  12. A.G. Khachaturyan: Theory of Structural Transformation in Solids (Wiley, New York, 1983), p. 226.

    Google Scholar 

  13. Y.S. Li, Z. Chen, Y.L. Lu, Y.X. Wang, and J.J. Zhang: Computer simulation for the precipitation process of Ni75Al7.5V17.5 alloy. Prog. Nat. Sci. 14, 1099 (2004).

    Article  CAS  Google Scholar 

  14. Y.S. Li, Z. Chen, Y.L. Lu, Y.X. Wang, and Q.B. Lai: Microscopic phase-field simulation of atomic migration characteristics in Ni75AlxV25−x alloys. Mater. Lett. (2006, Doi: 10.1016/J.Matlet. 2006.06.038).

    Google Scholar 

  15. L.Q. Chen: Computer simulation of spinodal decomposition in ternary systems. Acta Metall. Mater. 42, 3503 (1994).

    Article  CAS  Google Scholar 

  16. E.M. Lifshitz and L.P. Pitaevski: Statistical Physics (Pergamon Press, Oxford, UK, 1980).

    Google Scholar 

  17. K. Thornton, N. Akaiwa, and P.W. Voorhees: Dynamics of late-stage phase separation in crystalline solids. Phys. Rev. Lett. 86, 1259 (2001).

    Article  CAS  Google Scholar 

  18. S.V. Prikhodko, J.D. Carnes, and D.G. Isaak: Elastic constants of a Ni–12.69 at.% Al alloy from 295 to 1300 K. Scripta Mater. 38, 67 (1997).

    Article  Google Scholar 

  19. T. Miyazaki, M. Imamura, and T. Kozati: The formation of “γ′ precipitate doublets” in Ni–Al alloys and their energetic stability. Mater. Sci. Eng. 54, 9 (1982).

    Article  CAS  Google Scholar 

  20. J.B. Singh, M. Sundararaman, S. Banerjee, and P. Mukhopadhya: Evolution of order in melt-spun Ni–25at.%V alloys. Acta Mater. 53, 1135 (2005).

    Article  CAS  Google Scholar 

  21. A. Chakrabarti, R. Toral, and J.D. Gunton: Late-stage coarsening for off-criticak quenches: Scaling function and the growth law. Phys. Rev. E 47, 3025 (1993).

    Article  CAS  Google Scholar 

  22. L. Marteau, C. Pareige, and D. Blavette: Imaging the three orientation variants of the D022 phase by 3D atom probe microscopy. J. Microsc. 204, 247 (2001).

    Article  CAS  Google Scholar 

  23. A.C. Lund and P.W. Voorhees: The effect of elastic stress on coarsening in the Ni–Al system. Acta Mater. 50, 2085 (2002).

    Article  CAS  Google Scholar 

  24. A.D. Sequera, H.A. Calderon, and G. Kostotz: Shape and growth anomalies of γ′ precipitates in Ni–Al–Mo alloys induced by elastic interaction. Scripta. Metall. Mater. 30, 7 (1994).

    Article  Google Scholar 

  25. N. Akaiwa and P.W. Voorhees: Large scale numerical simulation of microstructural evolution in elastically stressed solids. Mater. Sci. Eng., A 285, 8 (2000).

    Article  Google Scholar 

  26. A.G. Khachaturyan, S.V. Semenovskaya, and J.W. Morris Jr.: Theoretical analysis of strain-induced shape changes in cubic precipitates during coarsening. Acta Metall. 36, 1563 (1988).

    Article  CAS  Google Scholar 

  27. M. Doi, T. Miyazaki, and T. Wakatsuki: The effects of elastic interaction energy on the γ′ precipitate morphology of continuously cooled nickel-base alloys. Mater. Sci. Eng. 74, 139 (1985).

    Article  CAS  Google Scholar 

  28. J.S. Langer and A.J. Schwartz: Kinetics of nucleation in near-critical fluids. Phys. Rev. A 21, 948 (1980).

    Article  CAS  Google Scholar 

  29. A.W. Zhu: Evolution of size distribution of shearable ordered precipitates under homogeneous deformation: Application to an Al–Li-alloy. Acta Metall. Mater. 45, 4213 (1997).

    Article  CAS  Google Scholar 

  30. E.D. Siebert and C.M. Knobler: Measurements of homogeneous nucleation near a critical solution temperature. Phys. Rev. Lett. 52, 1133 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.S., Chen, Z., Lu, Y.L. et al. Coarsening kinetics of intermetallic precipitates in Ni75AlxV25−x alloys. Journal of Materials Research 22, 61–67 (2007). https://doi.org/10.1557/jmr.2007.0013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0013

Navigation