Skip to main content
Log in

Analysis of local deformation in indented Ensis Siliqua mollusk shells using Raman spectroscopy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The local deformation surrounding an indented area of Ensis siliqua mollusk shell is characterized using a Raman spectroscopic technique, the findings of which are related to the material’s mechanical function. Microhardness indentation of four directional planes is used to show the marked anisotropy of the structure, where the outer and inner layers of the shell are found to have a significantly higher microhardness value of 4.82 ± 0.02 GPa, compared with transverse and longitudinal cross-sectional values of 3.00 ± 0.07 GPa. This difference is related to the crossed lamellar microstructure of the shell, which is oriented to provide the maximum resistance to external attack from predators. Nanoindentation of the material shows no such anisotropy, giving mean hardness and modulus values for the four directional planes of 3.86 ± 0.10 GPa and 82.4 ± 2.7 GPa respectively, thereby clarifying the prominent role of microstructure in such materials. Scanning electron microscopy of indented samples shows that plastic deformation and delamination occur to different extents, depending on the orientation of the structure and local microstructural features such as prismatic layers. A Raman spectroscopic technique has been used to map relative deformation in the vicinity of the indents, showing that the amount of plastic or permanent deformation can be quantified, and that material delamination can be distinguished from other forms of deformation such as local cracking. These experimental methods are repeated using samples of non-biogenic aragonite, which act as an analogous material for comparison with the shell. It is proposed that the analysis of microhardness indents using Raman spectroscopy could be applied to other biomaterials exhibiting anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.T. Kuhn-Spearing, H. Kessler, E. Chateau, R. Ballarini, A.H. Heuer: Fracture mechanisms of the Strombus gigas conch shell: Implications for the design of brittle laminates. J. Mater. Sci. 31, 6583 (1996).

    Article  CAS  Google Scholar 

  2. J.D. Currey: Mechanical-properties of mother of pearl in tension. Proc. R. Soc. London B, Biol. Sci. 196, 443 (1977).

    Article  Google Scholar 

  3. J.F.V Vincent: Handbook of Elastic Properties of Solids, Liquids and Gases, Volume III: Elastic Properties of Solids: Biological and Organic Materials, Earth and Marine Sciences (Academic Press, Burlington, MA, 2001), pp. 215–219.

    Google Scholar 

  4. S. Kamat, H. Kessler, R. Ballarini, M. Nassirou, A.H. Heuer: Fracture mechanisms of the Strombus gigas conch shell: II. Micromechanics analyses of multiple cracking and large-scale crack bridging. Acta Mater. 52, 2395 (2004).

    Article  CAS  Google Scholar 

  5. O.B. Bøggild: The shell structure of the mollusks. Kong. Dsk. Vidensk. Selsk. Skr., Natur. Math. Afd. 9, 112, 5 (1930).

    Google Scholar 

  6. S. Kamat, X. Su, R. Ballarini, A.H. Heuer: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036 (2000).

    CAS  Google Scholar 

  7. X. Li, P. Nardi: Micro/nanomechanical characterization of a natural nanocomposite material—The shell of Pectinidae. Nanotechnology 15, 211 (2004).

    Article  Google Scholar 

  8. Y. Dauphin, N. Guzman, A. Denis, J.P. Cuif, L. Ortlieb: Microstructure, nanostructure and composition of the shell of Concholepas concholepas (Gastropoda, Muricidae). Aquatic Living Resources 16, 95 (2003).

    Article  Google Scholar 

  9. S.J. Eichhorn, D.J. Scurr, S.P. Thompson, M. Golshan, R.J. Cernik: The role of residual stress in the fracture properties of a natural ceramic. J. Mater. Chem. 15, 947 (2005).

    Article  CAS  Google Scholar 

  10. M.Y. He, J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic materials. Int. J. Sol. Struct. 25, 1053 (1989).

    Article  Google Scholar 

  11. R.F. Robinson, C.A. Richardson: The direct and indirect effects of suction dredging on a razor clam (Ensis arcuatus) population. ICES J. Marine Sci. 55, 970 (1998).

    Article  Google Scholar 

  12. M.S. Amer: Raman spectroscopy investigations of functionally graded materials and inter-granular mechanics. Int. J. Sol. Struct. 42, 751 (2005).

    Article  CAS  Google Scholar 

  13. J.I. Steinfeld: Molecules and Radiation: An Introduction to Molecular Spectroscopy (The MIT Press, Cambridge, MA, 1979), pp. 134–144.

    Google Scholar 

  14. V.K. Mitra, W.M. Risen, R.H. Baughman: A laser Raman study of the stress dependence of vibrational frequencies of a monocrystalline polydiacetylene. J. Chem. Phys. 66, 2731 (1977).

    Article  CAS  Google Scholar 

  15. C. Lin, L. Liu: Post-aragonite phase transitions in strontianite and cerussite—A high pressure Raman spectroscopic study. J. Phys. Chem. Solids 58, 977 (1997).

    Article  CAS  Google Scholar 

  16. R. Frech, E.C. Wang, J.B. Bates: The IR spectra of CaCO3 (aragonite). Spectrochim. Acta, Part A 36, 915 (1980).

    Article  Google Scholar 

  17. B.J.F Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusk Trochus niloticus. J. Mater. Res. 20, 2400 (2005).

    Article  CAS  Google Scholar 

  18. G. Weidmann, P. Lewis, N. Reid: Structural Materials, 3rd ed. (Butterworth Heinemann, Open University Press, London, UK, 1996), pp. 100–102.

    Google Scholar 

  19. Y. Dauphin, A. Denis: Structure and composition of the aragonitic crossed lammellar layers in six species of bivalvia and gastropoda. Comp. Biochem. Physiol., A 126, 367 (2000).

    Article  CAS  Google Scholar 

  20. J.D. Taylor, M. Layman: The mechanical properties of bivalve (Molluska) shell structures. Palaeontology 15, 256 (1972).

    Google Scholar 

  21. D.F. Hou, G.S. Zhou, M. Zheng: Conch shell structure and its effect on mechanical behaviours. Biomaterials 25, 751 (2004).

    Article  CAS  Google Scholar 

  22. H.J. Gao, B.H. Ji, J.L. Jager, E. Arzt, P. Fratzl: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).

    Article  CAS  Google Scholar 

  23. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  24. R.F.S Hearmon: The elastic constants of anisotropic materials. Rev. Mod. Phys. 18, 409 (1946).

    Article  CAS  Google Scholar 

  25. M.L. Huggins: The crystal structures of aragonite (CaCO3) and related minerals. Phys. Rev. 19, 354 (1922).

    Article  CAS  Google Scholar 

  26. S.A. Wainwright: Stress and design in bivalved mollusk shell. Nature 224, 777 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scurr, D.J., Eichhorn, S.J. Analysis of local deformation in indented Ensis Siliqua mollusk shells using Raman spectroscopy. Journal of Materials Research 21, 3099–3108 (2006). https://doi.org/10.1557/jmr.2006.0382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0382

Navigation