Skip to main content
Log in

Inorganic nanotubes and fullerene-like nanoparticles

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have proposed in 1992 that nanoparticles of layered compounds will be unstable against folding and close into fullerene-like structures and nanotubes (IF). Nanotubes and fullerene-like structures were prepared from numerous compounds with layered and recently also non-layered structure by various groups. Much progress has been achieved in the synthesis of inorganic nanotubes and fullerene-like nanoparticles of WS2 and MoS2 and many other metal dichalcogenides over the last few years. Substantial progress has been accomplished in the use of such nanoparticles for tribological applications and lately for impact resilient nanocomposites. These tests indicated that IF-MoS2 and IF-WS2 are heading for large scale applications in the automotive, machining, aerospace, electronics, defense, medical and numerous other kinds of industries. A few products based on these nanoparticles have been recently commercialized by “ApNano Materials, Inc”. Novel applications of inorganic nanotubes and fullerene-like nanoparticles in the fields of catalysis; microelectronics; Li rechargeable batteries; medical and opto-electronics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brein, R.F. Curl, R.E. Smalley: C60: Buckminsterfullerene. Nature 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  3. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: Solid C60—A new form of carbon. Nature 347, 354 (1990).

    Article  Google Scholar 

  4. R. Tenne, L. Margulis, M. Genut, G. Hodes: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444 (1992).

    Article  CAS  Google Scholar 

  5. R.R. Chianelli, E.B. Prestridge, T.A. Pecoraro, J.P. DeNeufville: Molybdenum disuflide in the poorly crystalline “Rag” structure. Science 203, 1105 (1979).

    Article  CAS  Google Scholar 

  6. J.V. Sanders: Structure of catalytic particles. Ultramicroscopy 20, 33 (1986).

    Article  CAS  Google Scholar 

  7. L. Margulis, G. Salitra, R. Tenne, M. Talianker: Nested fullerene-like structures. Nature 365, 113 (1993).

    Article  CAS  Google Scholar 

  8. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne: High rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).

    Article  CAS  Google Scholar 

  9. Y. Rosenfeld Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J.L. Hutchison: Cage structures and nanotubes of NiCl2. Nature 395, 336 (1998).

    Article  Google Scholar 

  10. Y. Rosenfeld Hacohen, R. Popovitz-Biro, E. Grunbaum, Y. Prior, R. Tenne: Vapor-liquid-solid (VLS) growth of NiCl2 nanotubes via reactive gas laser ablation. Adv. Mater. 14, 1075 (2002).

    Article  Google Scholar 

  11. A. Albu-Yaron, T. Arad, R. Popovitz-Biro, M. Bar-Sadan, Y. Prior, M. Jansen, R. Tenne: Closed-cage (fullerene-like) structures of Cs2O. Angew. Chem., Int. Ed. Engl. 44, 4169 (2005).

    Article  CAS  Google Scholar 

  12. Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J.L. Hutchison, R. Tenne: Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118, 5362 (1996).

    Article  CAS  Google Scholar 

  13. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.J. Choi, P. Yang: Single-crystal gallium nitride nanotubes. Nature 422, 599 (2003).

    Article  CAS  Google Scholar 

  14. L.W. Yin, Y. Bando, Y.C. Zhu, M.S. Li, C.C. Tang, D. Golberg: Single crytalline AlN nanotubes with carbon layer coating on the outer and inner surfaces via multiwall carbon nanotube-template-induced route. Adv. Mater. 17, 213 (2005).

    Article  CAS  Google Scholar 

  15. L.W. Yin, Y. Bando, J.H. Zhan, M.S. Li, D. Golberg: Self-assembled highly faceted wurzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater. 17, 1972 (2005).

    Article  CAS  Google Scholar 

  16. A. Rothschild, J. Sloan, R. Tenne: The growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169 (2000).

    Article  CAS  Google Scholar 

  17. Y.Q. Zhu, W.K. Hsu, N. Grobert, B.H. Chang, M. Terrones, H. Terrones, H.W. Kroto, D.R.M Walton: Production of WS2 nanotubes. Chem. Mater. 12, 1190 (2000).

    Article  CAS  Google Scholar 

  18. W.K. Hsu, B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. Kroto, D.R.M Walton: An alternative route to MoS2 nanotubes. J. Am. Chem. Soc. 122, 10155 (2000).

    Article  CAS  Google Scholar 

  19. J. Cumings, A. Zettl: Mass-production of boron nitride double-wall nanotubes and nanococoons. Chem. Phys. Lett. 316, 211 (2000).

    Article  CAS  Google Scholar 

  20. M.E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H.U. Nissen: Redox-active nanotubes of vanadium oxide. Angew. Chem., Int. Ed. Engl. 37, 1263 (1998).

    Article  CAS  Google Scholar 

  21. G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.M. Peng: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).

    Article  CAS  Google Scholar 

  22. Y. Feldman, A. Zak, R. Popovitz-Biro, R. Tenne: New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid State Sci. 2, 663 (2000).

    Article  CAS  Google Scholar 

  23. A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne: Growth mechanism of MoS2 fullerene-like nanoparticles by the gas phase synthesis. J. Am. Chem. Soc. 122, 11108 (2000).

    Article  CAS  Google Scholar 

  24. L. Pauling: The structure of the chlorites. Proc. Natl. Acad. Sci. U.S.A. 16, 578 (1930).

    Article  CAS  Google Scholar 

  25. N.N. Greenwood, A. Earnshaw: Chemistry of the Elements (Pergamon, Oxford, UK,1990).

    Google Scholar 

  26. P.W. Fowler, D.E. Manolopoulos: Ann. Atlas of Fullerenes (Oxford University Press, Cambridge, UK,1995).

    Google Scholar 

  27. M. Cote, M.L. Cohen, D.J. Chadi: Theoretical study of the structural and electronic properties of GaSe nanotubes. Phys. Rev. B 58, R4277 (1998).

    Article  CAS  Google Scholar 

  28. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim: Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146 (2000).

    Article  CAS  Google Scholar 

  29. A.N. Enyashin, N.I. Medvedeva, Yu.E. Medvedeva, A.L. Ivanovskii: Electronic structure and magnetic states of crystalline and fullerene-like forms of nickel dichloride NiCl2. Phys. Solid State 47, 527 (2005).

    Article  CAS  Google Scholar 

  30. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, D. Mihailovic: Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479 (2001).

    Article  CAS  Google Scholar 

  31. P.A. Parilla, A.C. Dillon, K.M. Jones, G. Riker, D.L. Schulz, D.S. Ginley, M.J. Heben: The first inorganic fullerenes? Nature 397, 114 (1999).

    Article  CAS  Google Scholar 

  32. P.A. Parilla, A.C. Dillon, B.A. Parkinson, K.M. Jones, J. Alleman, G. Riker, D.S. Ginley, M.J. Heben: Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization. J. Phys. Chem. B 108, 6197 (2004).

    Article  CAS  Google Scholar 

  33. M. Zhao, Y. Xia, F. Li, R.Q. Zhang, S.T. Lee: Strain energy and electronic structures of silicon carbide nanotubes: Density-functional calculations. Phys. Rev. B 71, 085312 (2005).

    Article  CAS  Google Scholar 

  34. N.G. Chopra, A. Zettl: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297 (1998).

    Article  CAS  Google Scholar 

  35. I. Kaplan-Ashir, S.R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, R. Tenne: Mechanical behavior of WS2 nanotubes. J. Mater. Res. 19, 454 (2004).

    Article  Google Scholar 

  36. I. Kaplan-Ashir, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Kanevsky, H.D. Wagner, R. Tenne: What makes the mechanical properties of (WS2) nanotubes distinguishable from those of classical macroscopic objects. Proc. Natl. Acad. Sci. U.S.A. 103, 523 (2006).

    Article  CAS  Google Scholar 

  37. L. Rapoport, N. Fleischer, R. Tenne: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782 (2005).

    Article  CAS  Google Scholar 

  38. C.M. Zelenski, P.K. Dorhout: Template synthesis of near-monodisperse microscale nanofibers and anotubules. J. Am. Chem. Soc. 120, 734 (1998).

    Article  CAS  Google Scholar 

  39. M. Remskar, Z. Skraba, F. Cléton, R. Sanjinés, F. Lévy: MoS2 as microtubes. Appl. Phys. Lett. 69, 351 (1996).

    Article  CAS  Google Scholar 

  40. M. Remskar, Z. Skraba, C. Ballif, R. Sanjinés, F. Lévy: Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study. Surf. Sci. 435, 637 (1999).

    Article  Google Scholar 

  41. H. Masuda, K. Fukuda: Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).

    Article  CAS  Google Scholar 

  42. Y.D. Li, X.L. Li, R.R. He, J. Zhu, Z.X. Deng: Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 124, 1411 (2002).

    Article  CAS  Google Scholar 

  43. Y.Q. Zhu, W.K. Hsu, H. Terrones, N. Grobert, B.H. Chang, M. Terrones, B.Q. Wei, H.W. Kroto, D.R.M Walton, C.B. Boothroyd, I. Kinloch, G.Z. Chen, A.H. Windled, D.J. Frayd: Morphology, structure and growth of WS2 nanotubes. J. Mater. Chem. 10, 2570 (2000).

    Article  CAS  Google Scholar 

  44. R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, R. Tenne: WS2 nanotube bundles and foils. Chem. Mater. 14, 471 (2002).

    Article  CAS  Google Scholar 

  45. M.J. Yacaman, H. Lopez, P. Santiago, D.H. Galvan, I.L. Garzon, A. Reyes: Studies of MoS2 structures produced by electron irradiation. Appl. Phys. Lett. 69, 1065 (1996).

    Article  Google Scholar 

  46. D. Vollath, D.V. Szabo: Nanoparticles from compounds with layered structures. Acta Mater. 48, 953 (2000).

    Article  CAS  Google Scholar 

  47. C. Schuffenhauer, R. Popovitz-Biro, R. Tenne: Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). J. Mater. Chem. 12, 1587 (2002).

    Article  CAS  Google Scholar 

  48. J. Chen, S.L. Li, Z.L. Tao, F. Gao: Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun.980 (2003).

    Google Scholar 

  49. A. Margolin, R. Popovitz-Biro, A. Albu-Yaron, L. Rapoport, R. Tenne: Inorganic fullerene-like nanoparticles of TiS2. Chem. Phys. Lett. 411, 162 (2005).

    Article  CAS  Google Scholar 

  50. M. Chhowalla, G.A.J Amaratunga: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).

    Article  CAS  Google Scholar 

  51. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A.J Amaratunga, M. Naito, T. Kanki: Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett. 368, 331 (2003).

    Article  CAS  Google Scholar 

  52. H.A. Therese, F. Rocker, A. Reiber, J. Li, M. Stepputat, G. Glasser, U. Kolb, W. Tremel: VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2. Angew. Chem., Int. Ed. Engl. 44, 202 (2005).

    Article  CAS  Google Scholar 

  53. P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex: Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375, 564 (1995).

    Article  CAS  Google Scholar 

  54. P. Hoyer: Formation of a titanium dioxide nanotube array. Langmuir 12, 1411 (1996).

    Article  CAS  Google Scholar 

  55. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

  56. A.R. Armstrong, J. Canales, P.G. Bruce: WO2Cl2 nanotubes and nanowires. Angew. Chem., Int. Ed. Engl. 43, 4899 (2004).

    Article  CAS  Google Scholar 

  57. G.B. Saupe, C.C. Waraksa, H.N. Kim, Y.J. Han, D.M. Kaschak, D.M. Skinner, T.E. Mallouk: Nanoscale tubules formed by exfoliation of potassium hexaniobate. Chem. Mater. 12, 1556 (2000).

    Article  CAS  Google Scholar 

  58. S.V. Krivovichev, V. Kahlenberg, R. Kaindl, E. Mersdorf, I.G. Tananaev, B.F. Myasoedov: Nanoscale tubules in uranyl selenates. Angew. Chem., Int. Ed. Engl. 44, 1134 (2005).

    Article  CAS  Google Scholar 

  59. R. Popovitz-Biro, A. Twersky, Y. Rosenfeld Hacohen, R. Tenne: Nanoparticles of CdCl2 with closed cage structure. Isr. J. Chem. 41, 7 (2001).

    Article  CAS  Google Scholar 

  60. L.Y. Yin, Y. Bando, D. Golberg, M.S. Li: Growth of single crystal InN nanotubes and nanowires by controlled-carbonitridation reaction route. Adv. Mater. 16, 1833 (2004).

    Article  CAS  Google Scholar 

  61. J. Hu, Y. Bando, Z. Liu: Synthesis of gallium filled gallium oxide-zinc oxide composite coaxial nanotubes. Adv. Mater. 15, 1000 (2003).

    Article  CAS  Google Scholar 

  62. M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich: Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324 (1993).

    Article  CAS  Google Scholar 

  63. M. Reches, E. Gazit: Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625 (2003).

    Article  CAS  Google Scholar 

  64. F. Jensen, H. Toftlund: Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 201, 89 (1993).

    Article  CAS  Google Scholar 

  65. T. Oku, A. Nishiwaki, I. Narita, M. Gonda: Formation and structure of B24N24 clusters. Chem. Phys. Lett. 380, 620 (2003).

    Article  CAS  Google Scholar 

  66. A. Rubio, J.L. Corkill, M.L. Cohen: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081 (1994).

    Article  CAS  Google Scholar 

  67. G. Seifert, H. Terrones, M. Terrones, T. Frauenheim: Novel NbS2 metallic nanotubes. Solid State Commun. 115, 635 (2000).

    Article  CAS  Google Scholar 

  68. I. Boustani, A. Quandt: Nanotubules of bare boron clusters: Ab initio and density functional study. Europhys. Lett. 39, 527 (1997).

    Article  CAS  Google Scholar 

  69. G. Seifert, E. Hernandez: Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett. 318, 355 (2000).

    Article  CAS  Google Scholar 

  70. M. Zhao, Y. Xia, D. Zhang, L. Mei: Stability and electronic structure of AlN nanotubes. Phys. Rev. B. 68, 235415 (2003).

    Article  CAS  Google Scholar 

  71. S.M. Lee, Y.H. Lee, Y.G. Hwang, J. Elsner, D. Porezag, T. Frauenheim: Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys. Rev. B 60, 7788 (1999).

    Article  CAS  Google Scholar 

  72. A.N. Enyashin, Yu.N. Makurin, A.L. Ivanovskii: Electronic band structure of b-ZrNCl-based nanotubes. Chem. Phys. Lett. 387, 85 (2004).

    Article  CAS  Google Scholar 

  73. A. Zak, Y. Feldman, H. Cohen, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, S. Reich, R. Tenne: Alkali metal intercalation of fullerene-like MS2 (M = W, Mo) nanoparticles and their properties in comparison with bulk (2H) material. J. Am. Chem. Soc. 124, 4747 (2002).

    Article  CAS  Google Scholar 

  74. A. Johansson, G. Sambandamurthy, D. Shahar, N. Jacobson, R. Tenne: Nanowire acting as a superconducting quantum interference device. Phys. Rev. Lett. 95, 116805 (2005).

    Article  CAS  Google Scholar 

  75. G.L. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne: Optical absorption spectra of inorganic fullerene-like MS2 (M = Mo, W). Phys. Rev. B 57, 6666 (1998).

    Article  CAS  Google Scholar 

  76. L. Scheffer, R. Rosentzveig, A. Margolin, R. Popovitz-Biro, G. Seifert, S.R. Cohen, R. Tenne: Scanning tunneling microscopy study of WS2 nanotubes. Phys. Chem. Chem. Phys. 4, 2095 (2002).

    Article  CAS  Google Scholar 

  77. G.L. Frey, R. Tenne, M.J. Matthews, M.S. Dresselhaus, G. Dresselhaus: Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883 (1999) No.

    Article  CAS  Google Scholar 

  78. P.M. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashir, R. Tenne: The antenna effect in an individual WS2 nanotube. Phys. Rev. B 72, 205436 (2005).

    Article  CAS  Google Scholar 

  79. E. Dobardziæ, B. Daki, M. Damnjanovic, I. Milosevic: Zero m phonons in MoS2 nanotubes. Phys. Rev. B 71, 121405 (2005).

    Article  CAS  Google Scholar 

  80. L. Qian, Z.L. Dub, S.Y. Yang, Z.S. Jin: Raman study of titania nanotube by soft chemical process. J. Mol. Struct. 749, 103 (2005).

    Article  CAS  Google Scholar 

  81. W. Chen, L. Mai, J. Peng, Q. Xu, Q. Zhu: Raman spectroscopic study of vanadium oxide nanotubes. J. Solid State Chem. 177, 377 (2004).

    Article  CAS  Google Scholar 

  82. S.C. Hung, Y.K. Su, T.H. Fang, S.J. Chang, F.S. Juang, L.W. Ji, R.W. Chuang: Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology 16, 2203 (2005).

    Article  CAS  Google Scholar 

  83. Y.Q. Zhu, T. Sekine, Y.H. Li, M.W. Fay, Y.M. Zhao, C.H. Patrick Poa, W.X. Wang, R. Martin, P.D. Brown, N. Fleischer, R. Tenne: Shock-absorbing and failure mechanism of WS2 and MoS2 nanoparticles with fullerene-like structure under shockwave pressures. J. Am. Chem. Soc. 127, 16263 (2005).

    Article  CAS  Google Scholar 

  84. J. Chen, N. Kuriyama, H.T. Yuan, H.T. Takeshita, T. Sakai: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123, 11813 (2001).

    Article  CAS  Google Scholar 

  85. J. Chen, S.L. Li, Z.L. Tao: Novel hydrogen storage properties of MoS2 nanotubes. J. Alloys Compd. 356–357, 413 (2003).

    Article  CAS  Google Scholar 

  86. J. Chen, S.L. Li, Z.L. Tao, Y.T. Shen, C.X. Cui: Titanium disulfide nanotubes as hydrogen-storage materials. J. Am. Chem. Soc. 125, 5284 (2003).

    Article  CAS  Google Scholar 

  87. R. Dominko, M. Gaberscek, D. Arcon, A. Mrzel, M. Remskar, D. Mihailovic, S. Pejovnik, J. Jamnik: Electrochemical preparation and characterization of Liz MoS2–x nanotubes. Electrochim. Acta 48, 3079 (2003).

    Article  CAS  Google Scholar 

  88. M.E. Spahr, P. Stoschitzki-Bitterli, R. Nesper, O. Haas, P. Novak: Vanadium oxide nanotubes a new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 146, 2780 (1999).

    Article  CAS  Google Scholar 

  89. S. Nordlinder, K. Edstrom, T. Gustafsson: The performance of vanadium oxide nanorolls as cathode material in a rechargeable lithium battery. Electrochem. Solid-State Lett. 4, A129 (2001).

    Article  CAS  Google Scholar 

  90. A. Dobley, K. Ngala, T. Shoufeng, P.Y. Zavalij, M.S. Whittingham: Manganese vanadium oxide nanotubes: Synthesis, characterization, and electrochemistry. Chem. Mater. 13, 4382 (2001).

    Article  CAS  Google Scholar 

  91. J. Li, Z. Tang, Z. Zhang: H-titanate nanotube: A novel lithium intercalation host with large capacity and high rate capability. Electrochem. Comm. 7, 62 (2005).

    Article  CAS  Google Scholar 

  92. L. Rapoport, Yu. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).

    Article  CAS  Google Scholar 

  93. L. Joly-Pottuz, F. Dassenoy, M. Belin, B. Vacher, J.M. Martin, N. Fleischer: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477 (2005).

    Article  CAS  Google Scholar 

  94. J.J. Hu, J.S. Zabinski: Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM). Tribol. Lett. 18, 173 (2005).

    Article  CAS  Google Scholar 

  95. R. Greenberg, G. Halperin, I. Etsion, R. Tenne: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17, 179 (2004).

    Article  CAS  Google Scholar 

  96. W.X. Chen, Z.D. Xu, R. Tenne, R. Rosenstveig, W.L. Chen, H.Y. Gan, J.P. Tu: Wear and friction of Ni–P electroless composite coating including inorganic fullerene-like WS2 nanoparticles. Adv. Eng. Mater. 4, 686 (2002).

    Article  CAS  Google Scholar 

  97. Y. Golan, C. Drummond, J. Israelachvili, R. Tenne: In situ imaging of shearing contacts in the surface forces apparatus. Wear 245, 190 (2000).

    Article  CAS  Google Scholar 

  98. A. Rothschild, S.R. Cohen, R. Tenne: WS2 nanotubes as tips in scanning-probe microscopy. Appl. Phys. Lett. 75, 4025 (1999).

    Article  CAS  Google Scholar 

  99. J.F. Xu, R. Czerw, S. Webster, D.L. Carroll, J. Ballato, R. Nesper: Nonlinear optical transmission in VOx nanotubes and VOx nanotube composites. Appl. Phys. Lett. 81, 1711 (2002).

    Article  CAS  Google Scholar 

  100. L. Krusin-Elbaum, D.M. Newns, H. Zeng, V. Derycke, J.Z. Sun, R. Sandstrom: Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672 (2004).

    Article  CAS  Google Scholar 

  101. L. Qian, F. Teng, Z.S. Jin, Z.J. Zhang, T. Zhang, Y.B. Hou, S.Y. Yang, X.R. Xu: Improved optoelectronic characteristics of light-emitting diodes by using a dehydrated nanotube titanic acid (DNTA)-polymer nanocomposites. J. Phys. Chem. B 108, 13928 (2004).

    Article  CAS  Google Scholar 

  102. H. Tokudome, M. Miyauchi: Electrochromism of titanate-based nanotubes. Angew. Chem., Int. Ed. Engl. 44, 1974 (2005).

    Article  CAS  Google Scholar 

  103. M. Adachi, Y. Murata, I. Okada, S. Yoshikawa: Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488 (2003).

    Article  CAS  Google Scholar 

  104. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano. Lett. 6, 215 (2006).

    Article  CAS  Google Scholar 

  105. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tenne.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

This review article is based on the author’s 2005 MRS Medal talk titled “Inorganic Nanotubes and Inorganic Fullerene-Like Materials: From Concept to Applications,” presented at the 2005 MRS Fall Meeting on November 30, 2005.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Journal of Materials Research 21, 2726–2743 (2006). https://doi.org/10.1557/jmr.2006.0354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0354

Navigation