Skip to main content
Log in

Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We recently observed that surfactant sodium dodecyl sulfate (SDS)-encased HiPco single-walled carbon nanotubes (SWNTs) respond optically to hydrogen peroxide (H2O2) in the near-infrared region. In this report, we demonstrate that SDS-encased SWNTs immobilized with glucose oxidase (GOx) can be used to optically detect an enzymatic reaction of glucose based on their H2O2 sensitivity as well as pH sensitivity. Only the enzymatic product H2O2 induces the SWNT near-infrared spectral changes in buffer solutions (pH = 6.0), but both H2O2 and gluconic acid products do this in unbuffered solutions. The SWNT optical response to glucose possesses sensitivity and selectivity similar to an electrochemical method using carbon nanotube nanoelectrode arrays. Our results suggest possible carbon nanotube-based optical tools for molecular recognition applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon: Solution properties of single-walled carbon nanotubes. Science 282, 95 (1998).

    Article  CAS  Google Scholar 

  2. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593 (2002).

    Article  Google Scholar 

  3. A. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart: Starched carbon nanotubes. Angew. Chem., Int. Ed. Engl. 41, 2508 (2002).

    Article  CAS  Google Scholar 

  4. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, N.G. Tassi: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338 (2003).

    Article  CAS  Google Scholar 

  5. M.S. Strano, C.A. Dyke, M.L. Usrey, P.W. Barone, M.J. Allen, H. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, R.E. Smalley: Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519 (2003).

    Article  CAS  Google Scholar 

  6. M.J. O’Connell, E.E. Eibergen, S.K. Doorn: Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat. Mater. 4, 412 (2005).

    Article  CAS  Google Scholar 

  7. S.K. Doorn, R.E. Fields, H. Hu, M.A. Hamon, R.C. Haddon, J.P. Selegue, V. Majidi: High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc. 124, 3169 (2002).

    Article  CAS  Google Scholar 

  8. D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos: Bulk separation of metallic from semiconducting single wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370 (2003).

    Article  CAS  Google Scholar 

  9. R. Krupke, F. Hennrich, H.V. Lohneysen, M.M. Kappes: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344 (2003).

    Article  CAS  Google Scholar 

  10. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A. 100, 4984 (2003).

    Article  CAS  Google Scholar 

  11. L. An, Q. Fu, C. Lu, J. Liu: A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 126, 10520 (2004).

    Article  CAS  Google Scholar 

  12. X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling: Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commu. 5, 408 (2003).

    Article  CAS  Google Scholar 

  13. C. Hu, Y. Zhang, G. Bao, Y. Zhang, M. Liu, Z.L. Wang: DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 109, 20072 (2005).

    Article  CAS  Google Scholar 

  14. K. Besteman, J.O. Lee, F.G.M Wiertz, H.A. Heering, C. Dekker: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727 (2003).

    Article  CAS  Google Scholar 

  15. R. Singh, D. Pantarotto, D. McCarthy, O. Chaloin, J. Hoebeke, C.D. Partidos, J.P. Briand, M. Prato, A. Bianco, K. Kostarelos: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388 (2005).

    Article  CAS  Google Scholar 

  16. W. Zhao, C. Song, P.E. Pehrsson: Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 124, 12418 (2002).

    Article  CAS  Google Scholar 

  17. G. Dukovic, B.E. White, Z. Zhou, F. Wang, S. Jockusch, M.L. Steigerwald, T.F. Heinz, R.A. Friesner, N.J. Turro, L.E. Brus: Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269 (2004).

    Article  CAS  Google Scholar 

  18. M. Zheng, B.A. Diner: Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 126, 15490 (2004).

    Article  CAS  Google Scholar 

  19. M.S. Strano, C.B. Huffman, V.C. Moore, M.J. O’Connell, E.H. Haroz, J. Hubbard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R.H. Hauge, R.E. Smalley: Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979 (2003).

    Article  CAS  Google Scholar 

  20. K. Kelley, P.E. Pehrsson, L.M. Ericson, W. Zhao: Optical pH response of DNA wrapped HiPco carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1029 (2005).

    Article  CAS  Google Scholar 

  21. C. Song, P.E. Pehrsson, W. Zhao: Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 109, 21634 (2005).

    Article  CAS  Google Scholar 

  22. M.C.Y Chang, A. Pralle, E.Y. Isacoff, C.J. Chang: A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392 (2004).

    Article  CAS  Google Scholar 

  23. A.P.F Turner, I. Karube, G.S. Wilson: Biosensors: Fundamentals and Applications (Oxford Univ. Press, New York, 1987).

    Google Scholar 

  24. C.M. Henry: Getting under the skin: Implantable glucose sensors. Anal. Chem. 70, 594A (1998).

    CAS  Google Scholar 

  25. A.E.G Cass, G. Davis, G.D. Francis, H.A. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L Scott, A.P.F Turner: Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56, 667 (1984).

    Article  CAS  Google Scholar 

  26. D.S. Bindra, Y. Zhang, G.S. Wilson, R. Sternberg, D.R. Thevenot, D. Moatti, G. Reach: Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem. 63, 1692 (1991).

    Article  CAS  Google Scholar 

  27. R.K. Rhodes, M.C. Shults, S.J. Updike: Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital stimulation analysis. Anal. Chem. 66, 1520 (1994).

    Article  CAS  Google Scholar 

  28. E. Csoregi, D.W. Schmidtke, A. Heller: Design and optimization of a selective subcutaneously implantable glucose electrode based on “wired” glucose oxidase. Anal. Chem. 67, 1240 (1995).

    Article  CAS  Google Scholar 

  29. J. Wang, X. Zhang: Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Anal. Chem. 73, 844 (2001).

    Article  CAS  Google Scholar 

  30. Y. Lin, F. Lu, Y. Tu, Z. Ren: Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191 (2004).

    Article  CAS  Google Scholar 

  31. J. Wang, R.P. Deo, P. Poulin, M. Mangey: Carbon nanotube fiber microelectrodes. J. Am. Chem. Soc. 125, 14706 (2003).

    Article  CAS  Google Scholar 

  32. P. Cherukuri, S.M. Bachilo, S.H. Litovsky, R.B. Weisman: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638 (2004).

    Article  CAS  Google Scholar 

  33. B. Benedict, P.E. Pehrsson, W. Zhao: Optically sensing additional sonication effects on dispersed HiPco nanotubes in aerated water. J. Phys. Chem. B 109, 7778 (2005).

    Article  CAS  Google Scholar 

  34. L.G. Wade Jr.: Organic Chemistry (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987).

    Google Scholar 

  35. A. Awichi, E.M. Tee, G. Srikanthan, W. Zhao: Identification of overlapped near-infrared bands of glucose anomers using two-dimensional near-infrared and middle-infrared correlation spectroscopy. Appl. Spectrosc. 56, 897 (2002).

    Article  CAS  Google Scholar 

  36. W. Zhao, C. Song, B. Zheng, J. Liu, T. Viswanathan: Thermal recovery behavior of fluorinated single-walled carbon nanotubes. J. Phys. Chem. B 106, 293 (2002).

    Article  CAS  Google Scholar 

  37. R.B. Weisman, S.M. Bachilo: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical kataura plot. Nano Lett. 3, 1235 (2003).

    Article  CAS  Google Scholar 

  38. B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, M.L.H Green: Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 12664 (2002).

    Article  CAS  Google Scholar 

  39. S.S. Karajanagi, A.A. Vertegel, R.S. Kane, J.S. Dordick: Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20, 11594 (2004).

    Article  CAS  Google Scholar 

  40. P.W. Barone, S. Baik, D.A. Heller, M.S. Strano: Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86 (2005).

    Article  CAS  Google Scholar 

  41. M.N. Jones, P. Manley, A. Wilkinson: The dissociation of glucose oxidase by sodium n-dodecyl sulphate. Biochem. J. 203, 285 (1982).

    Article  CAS  Google Scholar 

  42. P.N. Prasad: Introduction to Biophotonics (John Wiley, New York, 2003).

    Book  Google Scholar 

  43. C.M. Henry: Near-IR gets the job done. Anal. Chem. 71, 625A (1999).

    Article  CAS  Google Scholar 

  44. M.J. Mattu, G.W. Small, M.A. Arnold: Determination of glucose in a biological matrix by multivariate analysis of multiple band-pass-filtered fourier transform near-infrared interferograms. Anal. Chem. 69, 4695 (1997).

    Article  CAS  Google Scholar 

  45. R. Badugu, J.R. Lakowicz, C.D. Geddes: Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal. Chem. 76, 610 (2004).

    Article  CAS  Google Scholar 

  46. D.S. Bindra, G.S. Wilson: Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Anal. Chem. 61, 2566 (1989).

    Article  CAS  Google Scholar 

  47. M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang: Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269 (2004).

    Article  CAS  Google Scholar 

  48. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur: Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816 (2003).

    Article  CAS  Google Scholar 

  49. P.M. Kasili, J.M. Song, T. Vo-Dinh: Optical sensor for the detection of caspase-9 activity in a single cell. J. Am. Chem. Soc. 126, 2799 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Pehrsson, P.E. & Zhao, W. Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes. Journal of Materials Research 21, 2817–2823 (2006). https://doi.org/10.1557/jmr.2006.0343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0343

Navigation