Skip to main content

Advertisement

Log in

Nitrogen-induced carbon nanobells and their properties

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polymerized nitrogen-containing carbon nanobell structures were fabricated by microwave plasma-assisted chemical vapor deposition using the mixture of source gases: methane, nitrogen, and hydrogen. The nanobells with one end sealed and another open contained a nitrogen concentration of about 1–10 at.%. A first-principles calculation was performed to understand the nitrogen effect on the formation of a bell structure. Based on the growth mechanism, a continual nanojunction formed between nanobell and nanotube. The unique structures with a weak connection between two adjacent nanobells were useful for producing short nanotubes several tens of nanometers in length and diameter. In addition, the short length and open edges at the outside surfaces of nanobells also benefited the electron field emission, energy storage, and chemical reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    CAS  Google Scholar 

  2. S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).

    Article  CAS  Google Scholar 

  3. Z.W. Pan, Z.R. Dai, Z.L. Wang: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).

    Article  CAS  Google Scholar 

  4. X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang: Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82, 4806 (2003).

    Article  CAS  Google Scholar 

  5. G.Y. Zhang, X. Jiang, E.G. Wang: Tubular graphite cones. Science 300, 472 (2003).

    Article  CAS  Google Scholar 

  6. G.Y. Zhang, X.D. Bai, E.G. Wang, Y. Guo, W. Guo: Monochiral tubular graphite cones formed by radial layer-by-layer growth. Phys. Rev. B 71, 113411 (2005).

    Article  CAS  Google Scholar 

  7. X.C. Ma, E.G. Wang, W. Zhou, D.A. Jefferson, J. Chen, S.Z. Deng, N.S. Xu, J. Yuan: Polymerized carbon nanobells and their field-emission properties. Appl. Phys. Lett. 75, 3105 (1999).

    Article  CAS  Google Scholar 

  8. G.Y. Zhang, X.C. Ma, D.Y. Zhong, E.G. Wang: Polymerized carbon nitride nanobells. J. Appl. Phys. 91, 9324 (2002).

    Article  CAS  Google Scholar 

  9. G.Y. Zhang, X. Jiang, E.G. Wang: Self-assembly of carbon nanohelices: Characteristics and field electron-emission properties. Appl. Phys. Lett. 84, 2646 (2004).

    Article  CAS  Google Scholar 

  10. J. Hu, O. Min, P. Yang, C.M. Lieber: Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48 (1999).

    Article  CAS  Google Scholar 

  11. Z. Yao, H.W.Ch. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions. Nature 402, 273 (1999).

    Article  CAS  Google Scholar 

  12. X. Ma, E.G. Wang: CNx′ carbon nanotube junctions synthesized by microwave chemical vapor deposition. Appl. Phys. Lett. 78, 978 (2001).

    Article  CAS  Google Scholar 

  13. J.D. Guo, C.Y. Zi, X.D. Bai, E.G. Wang: Boron carbonitride nanojunctions. Appl. Phys. Lett. 80, 124 (2002).

    Article  CAS  Google Scholar 

  14. D.Y. Zhong, S. Liu, G.Y. Zhang, E.G. Wang: Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission. J. Appl. Phys. 89, 5939 (2001).

    Article  CAS  Google Scholar 

  15. C.Y. Zhi, J.D. Guo, X.D. Bai, E.G. Wang: Adjustable boron carbonitride nanotubes. J. Appl. Phys. 91, 5325 (2002).

    Article  CAS  Google Scholar 

  16. C.N.R Rao, R. Sen, B.C. Sattishkumar, A. Govindaraj: Large aligned-nanotube bundles from ferrocene pyrolysis. J. Chem. Soc., Chem. Commun. 15, 1525 (1998).

    Article  Google Scholar 

  17. G.Y. Zhang, E.G. Wang: Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl. Phys. Lett. 82, 1926 (2003).

    Article  CAS  Google Scholar 

  18. R. Sen, B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, M.K. Renganathan, C.N.R Rao: Nitrogen-containing carbon nanotubes. J. Mater. Chem. 12, 2335 (1997).

    Article  Google Scholar 

  19. R. Sen, B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, G. Raina, J.P. Zhang, A.K. Cheetham, C.N.R Rao: B–C–N, C–N, and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts. Chem. Phys. Lett. 287, 671 (1998).

    Article  CAS  Google Scholar 

  20. M. Terrones, Ph. Redlich, N. Grobert, S. Trasobares, W.K. Hsu, H. Terrones, Y.Q. Zhu, J.P. Hare, A.K. Cheetham, M. Ruhle, H.W. Kroto, D.R.M Walton: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).

    Article  CAS  Google Scholar 

  21. M. Terrones, H. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, H.W. Kroto, D.R.M Walton, Ph. Kohler-Redlich, M. Ruhle, J.P. Zhang, A.K. Cheetham: Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett. 75, 3932 (1999).

    Article  CAS  Google Scholar 

  22. M. Terrones, N. Grobert, H. Terrones: Synthetic routes to nanoscale BxCyNz architectures. Carbon 40, 1665 (2002) and references therein.

    Article  CAS  Google Scholar 

  23. X.C. Ma, E.G. Wang, R.D. Tilley, D.A. Jefferson, W. Zhou: Size-controlled short nanobells: Growth and formation mechanism. Appl. Phys. Lett. 77, 4136 (2000).

    Article  CAS  Google Scholar 

  24. K. Koziol, M. Shaffer, A. Windle: Three-dimensional internal order in multiwall carbon nanotubes grown by chemical vapor deposition. Adv. Mater. 17, 760 (2005).

    Article  CAS  Google Scholar 

  25. E.J. Liang, P. Ding, H.R. Zhang, X.Y. Guo, Z.L. Du: Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine. Diamond Relat. Mater. 13, 69 (2004).

    Article  CAS  Google Scholar 

  26. C.H. Lin, H.L. Chang, C.M. Hsu, A.Y. Lo, C.T. Kuo: The role of nitrogen in carbon nanotube formation. Diamond Relat. Mater. 12, 1851 (2003).

    Article  CAS  Google Scholar 

  27. J.Y. Lee, B.S. Lee: Nitrogen induced structure control of vertically aligned carbon nanotubes synthesized by microwave plasma enhanced chemical vapor deposition. Thin Solid Films 418, 85 (2002).

    Article  CAS  Google Scholar 

  28. R. Kurt, C. Klinke, J.M. Bonard, K. Kern, A. Karimi: Tailoring the diameter of decorated C–N nanotubes by temperature variations using HF-CVD. Carbon 39, 2163 (2001).

    Article  CAS  Google Scholar 

  29. G.L. Zhao, J. Callaway: Phonons and superconductivity in YBa2Cu3O7. Phys. Rev. B. 50, 9511 (1994).

    Article  CAS  Google Scholar 

  30. G.L. Zhao, D. Bagayoko, E.G. Wang: Electronic structure of short carbon nanobells. Mod. Phys. Lett. B. 17, 375 (2003).

    Article  CAS  Google Scholar 

  31. O.M. Kuttel, O. Groening, C. Emmenegger, L. Schlapbach: Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl. Phys. Lett. 73, 2113 (1998).

    Article  CAS  Google Scholar 

  32. S.H. Jo, D.Z. Wang, J.Y. Huang, W.Z. Li, K. Kempa, Z.F. Ren: Field emission of carbon nanotubes grown on carbon cloth. Appl. Phys. Lett. 85, 810 (2004).

    Article  CAS  Google Scholar 

  33. J.M. Bonard, R. Kurt, C. Klinke: Influence of the deposition conditions on the field-emission properties of patterned nitrogenated carbon nanotube films. Chem. Phys. Lett. 343, 21 (2001).

    Article  CAS  Google Scholar 

  34. J.M. Bonard, H. Kind, T. Stockli, L.O. Nilsson: Field emission from carbon nanotubes: The first five years. Solid-State Electron. 45, 893 (2001).

    Article  CAS  Google Scholar 

  35. A. Chambers, C. Park, R.T.K Baker, N.M. Rodriguez: Hydrogen storage in graphite nanofibers. J. Phys. Chem. B 102, 4253 (1998).

    Article  CAS  Google Scholar 

  36. C. Liu, Y.Y. Fan, H.T. Cong, H.M. Cheng, M.S. Dresselhuas: Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286, 1127 (1999).

    Article  CAS  Google Scholar 

  37. A.C. Dillon, K.M. Johns, T.A. Bekkedahl, C.H. Klang, D.S. Bethune, M.J. Heben: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).

    Article  CAS  Google Scholar 

  38. Y. Ye, C.C. Ahm, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley: Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307 (1999).

    Article  CAS  Google Scholar 

  39. P. Chen, X. Wu, J. Lin, K.L. Tan: High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91 (1999).

    Article  CAS  Google Scholar 

  40. X.D. Bai, D.Y. Zhong, G.Y. Zhang, X.C. Ma, S. Liu, E.G. Wang, Y. Chen, D. Shaw: Hydrogen storage in carbon nitride nanobells. Appl. Phys. Lett. 79, 1552 (2001).

    Article  CAS  Google Scholar 

  41. J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 (1995).

    Article  CAS  Google Scholar 

  42. M. Winter, J.Q. Besenhard, M.E. Spahr, P. Novak: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998).

    Article  CAS  Google Scholar 

  43. D.Y. Zhong, G.Y. Zhang, S. Liu, E.G. Wang, Q. Wang, H. Li, X.J. Huang: Lithium storage in polymerized carbon nitride nanobells. Appl. Phys. Lett. 79, 3500 (2001).

    Article  CAS  Google Scholar 

  44. N. Abedinov, C. Popov, Z. Yordanov, I.W. Rangelow, W. Kulisch: Investigations of the sorption behaviour of amorphous nitrogen-rich carbon nitride films as sensitive layers for cantilever-based chemical sensors. Appl. Phys. A. 79, 531 (2004).

    Article  CAS  Google Scholar 

  45. L.M. Zambov, C. Popov, N. Abedinov, M.F. Plass, W. Kulisch, T. Gotszalk, P. Grabiec, I.W. Rangelow, R. Kassing: Gas-sensitive properties of nitrogen-rich carbon nitride films. Adv. Mater. 12, 656 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E.G. Nitrogen-induced carbon nanobells and their properties. Journal of Materials Research 21, 2767–2773 (2006). https://doi.org/10.1557/jmr.2006.0339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0339

Navigation