Skip to main content
Log in

Fabrication and photoluminescence properties of core-shell structured spherical SiO2@Gd2Ti2O7:Eu3+ phosphors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ∼620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@Gd2Ti2O7:Eu3+ samples show strong emission of Eu3+. For the samples annealed from 600 to 800 °C, the emission is dominated by 613 nm red emission ascribed to 5D07F2 transition of Eu3+, while for those annealed from 900 to 1000 °C, the emission is dominated by 588 nm orange emission due to 5D07F1 transition of Eu3+. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Plaza, J.D.G Duran, A. Quirantes, M.J. Ariza, and A.V. Delgado: Surface chemical analysis and electrokinetic properties of spherical hematite particles coated with yttrium compounds. J. Colloid Interface Sci. 194, 398 (1997).

    Article  CAS  Google Scholar 

  2. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Mohwald, A. Eychmuller, and H. Weller: Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub- and μm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Adv. Mater. 12, 333 (2000).

    Article  CAS  Google Scholar 

  3. F. Caruso, M. Spasova, V. Salgueirino-Maceira, and L.M. Liz-Marzán: Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv. Mater. 13, 1090 (2001).

    Article  CAS  Google Scholar 

  4. F. Caruso, H. Lichtenfeld, M. Giersig, and H. Mohwald: Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc. 120, 8523 (1998).

    Article  CAS  Google Scholar 

  5. P. Mulvaney, M. Giersig, T. Ung, and L.M. Liz-Marzán: Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv. Mater. 9, 570 (1997).

    Article  Google Scholar 

  6. M.S. Fleming, T.K. Mandal, and D.R. Walt: Nanosphere-microsphere assembly: Methods for core-shell materials preparation. Chem. Mater. 13, 2210 (2001).

    Article  CAS  Google Scholar 

  7. W.P. Hsu, R.C. Yu, and E. Matijević: Paper whiteners. I. Titania coated silica. J. Colloid Interface Sci. 156, 56 (1993).

    Article  CAS  Google Scholar 

  8. O.V. Makarova, A.E. Ostafin, H. Miyoshi, J.R. Norris Jr., and D. Meisel: Adsorption and encapsulation of fluorescent probes in nanoparticles. J. Phys. Chem. B 103, 9080 (1999).

    Article  CAS  Google Scholar 

  9. M.A. Correa-Durate, M. Giersig, and L.M. Liz-Marzán: Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem. Phys. Lett. 286, 497 (1998).

    Article  Google Scholar 

  10. A.S. Ethiraj, N. Hebalkar, S.K. Kulkarni, R. Pascricha, J. Urban, C. Dem, M. Schmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Heske, C. Kumpf, and E. Umbach: Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. J. Chem. Phys. 118, 8945 (2003).

    Article  CAS  Google Scholar 

  11. K.P. Velikov, A. Moroz, and A. van Blaaderen: Photonic crystals of core-shell colloidal particles. Appl. Phys. Lett. 80, 49 (2002).

    Article  CAS  Google Scholar 

  12. M. Alejandro-Arellano, T. Ung, A. Blanco, P. Mulvaney, and L.M. Liz-Marzán: Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure Appl. Chem. 72, 257 (2000).

    Article  CAS  Google Scholar 

  13. L.M. Liz-Marzán, M. Giersig, and P. Mulvaney: Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329 (1996).

    Article  Google Scholar 

  14. F. Caruso: Nanoengineering of particle surfaces. Adv. Mater. 13, 11 (2001).

    Article  CAS  Google Scholar 

  15. L.M. Liz-Marzán, M.A. Correa-Durate, I. Pastoriza-Santos, P. Mulvaney, T. Ung, M. Giersig, and N.A. Kotov: Nanostructured material, micelles and colloids, in Handbook of Surfaces and Interfaces of Materials, Vol. 3, edited by H.S. Nalwa (Stanford Scientific Corp., Los Angeles, CA, 2001), p. 189.

  16. H.L. Xia and F.Q. Tang: Surface synthesis of zinc oxide nanoparticles on silica spheres. Preparation and characterization. J. Phys. Chem. B 107, 9175 (2003).

    Article  CAS  Google Scholar 

  17. P. Schuetz and F. Caruso: Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem. Mater. 14, 4509 (2002).

    Article  CAS  Google Scholar 

  18. S.R. Hall, S.A. Davis, and S. Mann: Cocondensation of organosilica hybrid shells on nanoparticle templates: A direct synthetic route to functionalized core-shell colloids. Langmuir 16, 1454 (2000).

    Article  CAS  Google Scholar 

  19. I. Sondi, T.H. Fedynyshyn, R. Sinta, and E. Matijevic: Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir 16, 9031 (2000).

    Article  CAS  Google Scholar 

  20. X. Jing, T. Ireland, C. Gibbons, D.J. Barber, J. Silver, A. Vecht, G. Fern, P. Trowga, and D.C. Morton: Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV. J. Electrochem. Soc. 146, 4654 (1999).

    Article  CAS  Google Scholar 

  21. A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T.G. Ireland, J. Silver, and A. Newport: Engineering phosphors for field emission displays. J. Vac. Sci. Technol., B 17, 750 (1999).

    Article  CAS  Google Scholar 

  22. Y.D. Jiang, Z.L. Wang, F.L. Zhang, H.G. Paris, and C.J. Summers: Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique. J. Mater. Res. 13, 2950 (1998).

    Article  CAS  Google Scholar 

  23. W. Stöber, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  24. P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132 (1999).

    Article  CAS  Google Scholar 

  25. M. Yu, J. Lin, J. Fu, H.J. Zhang, and Y.C. Han: Sol–gel synthesis and photoluminescent properties of LaPO4: A (A = Eu3+, Ce3+, Tb3+) nanocrystalline thin films. J. Mater. Chem. 13, 1413 (2003).

    Article  CAS  Google Scholar 

  26. M. Yu, Z. Wang, J. Fu, S. Wang, H.J. Zhang, and Y.C. Han: Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem. Mater. 14, 2224 (2002).

    Article  CAS  Google Scholar 

  27. M. Yu, J. Lin, and J. Fang: Silica spheres coated with YVO4:Eu3+ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors. Chem. Mater. 17, 1783 (2005).

    Article  CAS  Google Scholar 

  28. M.A. Subramanian, G. Aravamudan, and G.V. Subba Rao: Oxide pyrochlores—A review. Prog. Solid State Chem. 15, 55 (1983).

    Article  CAS  Google Scholar 

  29. A.A. Digeos, J.A. Valdez, K.E. Sickafus, S. Atiq, R.W. Grimes, and A.R. Boccaccini: Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation. J. Mater. Sci. 38, 1597 (2003).

    Article  CAS  Google Scholar 

  30. H. Armon, E.R. Bauminger, A. Diamant, I. Nowik, and S. Ofer: Goldanskii effect in quadrupole Mössbauer spectra of the 89 keV gamma ray of 156Gd. Solid State Commun. 15, 543 (1974).

    Article  CAS  Google Scholar 

  31. S.A. Kramer and H.L. Tuller: A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82, 15 (1995).

    Article  CAS  Google Scholar 

  32. S. Yamaguchi, K. Kobayashi, K. Abe, S. Yamazaki, and Y. Iguchi: Electrical conductivity and thermoelectric power measurements of Y2Ti2O7Solid State Ionics 113–115, 393 (1998).

    Article  Google Scholar 

  33. P.T. Diallo, P. Boutinaud, R. Mahiou, and J.C. Cousseins: Luminescence properties of (La,Pr)2Ti2O7. J. Alloys Compd. 275–277, 307 (1998).

    Article  Google Scholar 

  34. M.J. Harris, S.T. Bramwell, T. Zeiske, D.F. McMorrow, and P.J.C King: Magnetic structures of highly frustrated pyrochlores. J. Magn. Magn. Mater. 177–181, 757 (1998).

    Article  Google Scholar 

  35. M. Langlet, C. Coutier, J. Fick, M. Audier, W. Meffre, B. Jacquier, and R. Rimet: Sol–gel thin film deposition and characterization of a new optically active compound: Er2Ti2O7. Opt. Mater. 16, 463 (2001).

    Article  CAS  Google Scholar 

  36. P.T. Diallo, P. Boutinaud, and R. Mahiou: Anti-stokes luminescence and site selectivity in La2Ti2O7: Pr3+. J. Alloys Compd. 341, 139 (2002).

    Article  CAS  Google Scholar 

  37. M.L. Pang, J. Lin, J. Fu, and Z.Y. Cheng: Luminescent properties of Gd2Ti2O7: Eu3+ phosphor films prepared by sol–gel process. Mater. Res. Bull. 39, 1607 (2004).

    Article  CAS  Google Scholar 

  38. S. Fujihara and K. Tokumo: Multiband orange-red luminescence of Eu3+ ions based on the pyrochlore-structured host crystal. Chem. Mater. 17, 5587 (2005).

    Article  CAS  Google Scholar 

  39. A. Kioul and L. Mascia: Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents. J. Non-Cryst. Solids 175, 169 (1994).

    Article  CAS  Google Scholar 

  40. S. Kook Mah and I.J. Chung: Effects of dimethyldiethoxysilane addition on tetraethylorthosilicate sol-gel process. J. Non-Cryst. Solids 183, 252 (1995).

    Article  Google Scholar 

  41. Y. Chen and J.O. Iroh: Synthesis and characterization of polyimide/silica hybrid composites. Chem. Mater. 11, 1218 (1999).

    Article  CAS  Google Scholar 

  42. J. Méndez-Vivar and A. Mendoza-Bandala: Spectroscopic study on the early stages of the polymerization of hybrid TEOS-RSi (OR’) (3) sols. J. Non-Cryst. Solids 261, 127 (2000).

    Article  Google Scholar 

  43. A. García-Murillo, C.L. Luyer, C. Dujardin, C. Pedrini, and J. Mugnier: Elaboration and characterization of Gd2O3 waveguiding thin films prepared by sol-gel process. Opt. Mater. 16, 39 (2001).

    Article  Google Scholar 

  44. J.T. Last: Infrared-absorption studies on barium titanate and related materials. Phys. Rev. 105, 1740 (1957).

    Article  CAS  Google Scholar 

  45. K.L. Frindell, M.H. Bartl, A. Popitsch, and G.D. Stucky: Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem., Int. Ed. Engl. 41, 959 (2002).

    Article  CAS  Google Scholar 

  46. Y.M. Jana, A. Sengupta, and D. Ghosh: Estimation of single ion anisotropy in pyrochlore Dy2Ti2O7, a geometrically frustrated system, using crystal field theory. J. Magn. Magn. Mater. 248, 7 (2002).

    Article  CAS  Google Scholar 

  47. W.R. Panero, L. Stixrude, and R.C. Ewing: First-principles calculation of defect-formation energies in the Y2(Ti,Sn,Zr)2O7 pyrochlore. Phys. Rev. B 70, 054110 (2004).

    Article  CAS  Google Scholar 

  48. E. López-Navarrete, V.M. Orera, F.J. Lázaro, J.B. Carda, and M. Ocana: Preparation through aerosols of Cr-doped Y2Sn2O7 (pyrochlore) red-shade pigments and determination of the Cr oxidation state. J. Am. Ceram. Soc. 87, 2108 (2004).

    Article  Google Scholar 

  49. R.D. Shanon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongshun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Yu, M., Wang, R. et al. Fabrication and photoluminescence properties of core-shell structured spherical SiO2@Gd2Ti2O7:Eu3+ phosphors. Journal of Materials Research 21, 2232–2240 (2006). https://doi.org/10.1557/jmr.2006.0297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0297

Navigation