Skip to main content
Log in

Devitrification behavior around supercooled liquid region of an Al85Ni5Y8Co2 metallic glass

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Melt-spun and annealed Al85Ni5Y8Co2 metallic glass, with a large supercooled liquid region, were investigated by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and small-angle x-ray scattering (SAXS). TEM studies revealed that the as-quenched ribbons were fully amorphous. Further, the SAXS measurements showed that no evidence for compositional inhomogeneities associated with amorphous phase separation was found in the as-quenched state and the early stage annealing prior to devitrification. The primary crystallization of this glass was characterized, intriguingly, which appeared to be proceeded with an initial thermal relaxation, then α-Al nanocrystal nucleation with a limited number, finally a high density of nanocrystals nucleation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).

    Article  CAS  Google Scholar 

  2. A. Calin, A. Rüdiger, and U. Köster: Primary crystallization of Al-based metallic glasses. Mater. Sci. Forum 343-346, 359 (2000).

    Google Scholar 

  3. D.R. Allen, J.C. Foley, and J.H. Perepezko: Nanocrystal development during primary crystallization of amorphous alloys. Acta Mater. 46, 431 (1998).

    Article  CAS  Google Scholar 

  4. A.K. Gangopadhyay, T.K. Croat, and K.F. Kelton: The effect of phase separation on subsequent crystallization in Al18Gd6La2Ni4. Acta Mater. 48, 4035 (2000).

    Article  CAS  Google Scholar 

  5. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  6. S. Schneider, P. Thiyagarajan, and W.L. Johnson: Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 68, 493 (1996).

    Article  CAS  Google Scholar 

  7. I. Martin, T. Ohkubo, M. Ohnuma, B. Deconihout, and K. Hono: Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater. 52, 4427 (2004).

    Article  CAS  Google Scholar 

  8. D. Nagahama, T. Ohkubo, and K. Hono: Crystallization of Ti36Zr24Be40 metallic glass. Scripta Mater. 49, 729 (2003).

    Article  CAS  Google Scholar 

  9. A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, and K. Hono: In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 (2004).

    Article  Google Scholar 

  10. B.J. Park, H.J. Chang, D.H. Kim, and W.T. Kim: In situ formation of two amorphous phases by liquid phase separation in Y-Ti-Al-Co alloy. Appl. Phys. Lett. 85, 6353 (2004).

    Article  CAS  Google Scholar 

  11. D.V. Louzguine and A. Inoue: Influence of a supercooled liquid on devitritication of Cu-, Hf- and Ni-based metallic glasses. Mater. Sci. Eng., A 375–377, 346 (2004).

    Article  Google Scholar 

  12. Y. He, S.J. Poon, and G.J. Shiflet: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).

    Article  CAS  Google Scholar 

  13. L. Battezzati, M. Baricco, P. Schumacher, W.C. Shih, and A.L. Greer: Crystallization behavior of Al-Sm amorphous-alloys. Mater. Sci. Eng., A 179(180), 600 (1994).

    Article  Google Scholar 

  14. J.H. Perepezko and G. Wilde: Amorphization and alloy metastability in under-cooled systems. J. Non-Cryst. Solids 274, 271 (2000).

    Article  CAS  Google Scholar 

  15. D.V. Louzguine and A. Inoue: Strong influence of supercooled liquid on crystallization of the Al85Ni5Y4Nd4Co2 metallic glass. Appl. Phys. Lett. 78, 3061 (2001).

    Article  CAS  Google Scholar 

  16. S.V. Madge, D.T.L Alexander, and A.L. Greer: An EFTEM study of compositional variations in Mg-Ni-Nd bulk metallic glasses. J. Non-Cryst. Solids 317, 23 (2003).

    Article  CAS  Google Scholar 

  17. J.Q. Wang, H.W. Zhang, X.J. Gu, K. Lu, F. Sommer, and E.J. Mittemeijer: Identification of nanocrystal nucleation and growth in Al85Ni5Y8Co2 metallic glass with quenched-in nuclei. Appl. Phys. Lett. 80, 3319 (2002).

    Article  CAS  Google Scholar 

  18. L.E. Tanner and R. Ray: Phase separation in Zr-Ti-Be metallic glasses. Scripta Metall. 14, 657 (1980).

    Article  CAS  Google Scholar 

  19. N. Tian, M. Ohnuma, T. Ohkubo, and K. Hono: Primary crystallization of an Al88Gd6Er2Ni4 metallic glass. Mater. Trans. 46, 2880 (2005).

    Article  CAS  Google Scholar 

  20. B.B. Sun, Y.B. Wang, J. Wen, H. Yang, M.L. Sui, J.Q. Wang, and E. Ma: Artifacts induced in metallic glasses during TEM sample preparation. Scripta Mater. 53, 805 (2005).

    Article  CAS  Google Scholar 

  21. L.C. Chen and F. Spaepen: Calorimetric evidence for the microquasicrystalline structure of amorphous Al-transition metal-alloys. Nature 336, 366 (1988).

    Article  CAS  Google Scholar 

  22. A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai, and T. Masumoto: Effect of Cu or Ag on the formation of coexistent nanoscale Al particles in Al-Ni-M-Ce (M=Cu or Ag) amorphous-alloys. Mater. Trans., JIM 35, 95 (1994).

    Article  CAS  Google Scholar 

  23. A.P. Tsai, T. Kamiyama, A. Inoue, and T. Masumoto: Formation and precipitation mechanism of nanoscale Al particles in Al-Ni base amorphous alloys. Acta Mater. 45, 1477 (1997).

    Article  CAS  Google Scholar 

  24. W. Liu, W.L. Johnson, S. Schneider, U. Geyer, and P. Thiyagarajan: Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy. Phys. Rev. B 59, 11755 (1999).

    Article  CAS  Google Scholar 

  25. S. Schneider, U. Geyer, P. Thiyagarajan, and W.L. Johnson: Time and temperature dependence of decomposition and crystallization in a multicomponent bulk metallic glass forming alloy. Mater. Sci. Forum 235–238, 337 (1997).

    Google Scholar 

  26. K. Hono, Y. Zhang, A.P. Tsai, A. Inoue, and T. Sakurai: Solute partitioning in partially crystallized Al-Ni-Ce(-Cu) metallic glasses. Scripta Mater. 32, 191 (1995).

    Article  CAS  Google Scholar 

  27. T. Gloriant, D.H. Ping, K. Hono, A.L. Greer, and M. Baro: Nanostructured Al88Ni4Sm8 alloys investigated by transmission electron and field ion microscopies. Mater. Sci. Eng. A. 304–306, 315 (2001).

    Article  Google Scholar 

  28. R.E. Hackenberg, M.C. Gao, L. Kauffman, and G.L. Shiflet: Thermodynamics and phase equilibria of the Al-Fe-Gd metallic glass-forming system. Acta Mater. 50, 2245 (2002).

    Article  CAS  Google Scholar 

  29. K.F. Kelton, T.K. Croat, A.K. Gangopadhyay, L.Q. Xing, A.L. Greer, M. Weyland, X. Li, and K. Rajan: Mechanisms for nanocrystal formations in metallic glasses. J. Non-Cryst. Solids. 317, 71 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H.W., Ohnuma, M. & Wang, J.Q. Devitrification behavior around supercooled liquid region of an Al85Ni5Y8Co2 metallic glass. Journal of Materials Research 21, 2215–2223 (2006). https://doi.org/10.1557/jmr.2006.0295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0295

Navigation