Skip to main content
Log in

Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Many layered ternary ceramics displayed unusual thermal shock behavior, i.e., the retained strengths of as-quenched samples increased with increasing quench temperature above a critical quench temperature. However, the causation was not clear even though this phenomenon has been observed for 10 years. In this study, the thermal shock behavior of Ti3SiC2 and Ti3AlC2, two representative members of layered ternary ceramics, was investigated. The results indicated that the formation of surface oxides was responsible for this abnormal phenomenon. These results might contribute to the understanding of this unusual behavior of other layered ternary ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.H. Koh, H.W. Kim, H.E. Kim, and J.W. Halloran: Thermal shock resistance of fibrous monolithic Si3N4/BN ceramics. J. Eur. Ceram. Soc. 24, 2339 (2004).

    Article  CAS  Google Scholar 

  2. E.H. Lutz, M.V. Swain, and N. Claussen: Thermal shock behavior of duplex ceramics. J. Am. Ceram. Soc. 74, 19 (1991).

    Article  CAS  Google Scholar 

  3. X.Q. You, T.Z. Si, N. Liu, P.P. Ren, Y.D. Xu, and J.P. Feng: Effect of grain size on thermal shock resistance of Al2O3TiC ceramics. Ceram. Inter. 31, 33 (2005).

    Article  CAS  Google Scholar 

  4. M. Aldridge and J.A. Yeomans: The thermal shock behaviour of ductile particle toughened alumina composites. J. Eur. Ceram. Soc. 19, 1769 (1999).

    Article  CAS  Google Scholar 

  5. T. Hirano and K. Niihara: Thermal shock resistance of Si3N4/SiC nanocomposites fabricated from amorphous Si-C-N precursor powders. Mater. Lett. 26, 285 (1996).

    Article  CAS  Google Scholar 

  6. M.W. Barsoum and T. El-Raghy: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953 (1996).

    Article  CAS  Google Scholar 

  7. T. El-Raghy, M.W. Barsoum, A. Zavaliangos, and S.R. Kalidindi: Processing and mechanical properties of Ti3SiC2: II. Effect of grain size and deformation temperature. J. Am. Ceram. Soc. 82, 2855 (1999).

    Article  CAS  Google Scholar 

  8. N.V. Tzenov and M.W. Barsoum: Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825 (2000).

    Article  CAS  Google Scholar 

  9. X.H. Wang and Y.C. Zhou: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3141 (2002).

    CAS  Google Scholar 

  10. Y.W. Bao, X.H. Wang, H.B. Zhang, and Y.C. Zhou: Thermal shock behavior of Ti3AlC2 quenched in various media from 200 to 1300 °C. J. Eur. Ceram. Soc. 25, 3367 (2005).

    Article  CAS  Google Scholar 

  11. A. Ganguly, T. Zhen, and M.W. Barsoum: Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x = 0.5, 0.75) solid solutions. J. Alloys Compd. 376, 287 (2004).

    Article  CAS  Google Scholar 

  12. A.T. Procopio, M.W. Barsoum, and T. El-Raghy: Characterization of Ti4AlN3. Metall. Mater. Trans. A 31, 333 (2000).

    Article  Google Scholar 

  13. I. Salama, T. El-Raghy, and M.W. Barsoum: Synthesis and mechanical properties of Nb2AlC and (Ti, Nb)2AlC. J. Alloys Compd. 347, 271 (2002).

    Article  Google Scholar 

  14. M.W. Barsoum: The MN+1AXN phases: A new class of solids. Prog. Solid State Chem. 28, 201 (2000).

    Article  CAS  Google Scholar 

  15. Y.C. Zhou, Z.M. Sun, S.Q. Chen, and Y. Zhang: In-situ hot pressing/ solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramic. Mater. Res. Innov. 2, 142 (1998).

    Article  CAS  Google Scholar 

  16. X.H. Wang and Y.C. Zhou: Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 12, 455 (2002).

    Article  CAS  Google Scholar 

  17. Y.C. Zhou and Z.M. Sun: Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression. J. Eur. Ceram. Soc. 21, 1007 (2001).

    Article  CAS  Google Scholar 

  18. R.M. Orenstein and D.J. Green: Thermal shock behavior of open-cell ceramic foams. J. Am. Ceram. Soc. 75, 1899 (1992).

    Article  CAS  Google Scholar 

  19. W.J. Lee and E.D. Case: Cyclic thermal shock in SiC-whisker-reinforced alumina composite. Mater. Sci. Eng., A 119, 113 (1989).

    Article  Google Scholar 

  20. H.Y. Wang, R.N. Singh, and R.A. Lowden: Thermal shock behavior of two-dimensional woven fiber-reinforced ceramic composites. J. Am. Ceram. Soc. 79, 1783 (1996).

    Article  CAS  Google Scholar 

  21. L.J. Vandeperre, A. Kristofferson, E. Carlstrom, and W.J. Clegg: Thermal shock of layered ceramic structures with crack-deflecting interfaces. J. Am. Ceram. Soc. 84, 104 (2001).

    Article  CAS  Google Scholar 

  22. Almaz Optics. Available at http://www.almazoptics.com/homepage/TiO2.htm; accessed 2006.

  23. Z. Sun, Y. Zhou, and M. Li: High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater. 49, 4347 (2001).

    Article  CAS  Google Scholar 

  24. M.W. Barsoum, T. El-Raghy, and L.U.J.T Ogbuji: Oxidation of Ti3SiC2 in air. J. Electrochem. Soc. 144, 2508 (1997).

    Article  CAS  Google Scholar 

  25. E. Glenny and M.G. Royston: Transient thermal stresses promoted by rapid heating and cooling of brittle circular cylinders. Trans. Br. Ceram. Soc. 57, 645 (1958).

    Google Scholar 

  26. R.W. Davidge and G. Tappin: Thermal shock and fracture in ceramics. Trans. Br. Ceram. Soc. 66, 405 (1967).

    CAS  Google Scholar 

  27. D.P.H Hasselman: Strength behavior of polycrystalline alumina subjected to thermal shock. J. Am. Ceram. Soc. 53, 490 (1970).

    Article  CAS  Google Scholar 

  28. Y.W. Mai and A.G. Atkins: Fracture strength behavior of tool carbides subjected to thermal shock. Am. Ceram. Soc. Bull. 54, 593 (1975).

    CAS  Google Scholar 

  29. W.D. Kingery: Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 38, 3 (1955).

    Article  Google Scholar 

  30. C.C. Chiu: Influence of surface oxidation on thermal shock resistance and flexural strength of SiC/Al2O3 composites. J. Mater. Sci. 29, 2078 (1994).

    Article  CAS  Google Scholar 

  31. D. Lewis: Effect of surface treatment on the strength and thermal shock behavior of a commercial glass-ceramic. Am. Ceram. Soc. Bull. 58, 599 (1979).

    CAS  Google Scholar 

  32. K. Takatori: Thermal shock resistance of alumina-sialon composites. J. Mater. Sci. 29, 2115 (1994).

    Article  CAS  Google Scholar 

  33. Y.C. Zhou and Z.M. Sun: Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics. Mater. Res. Innov. 2, 360 (1999).

    Article  CAS  Google Scholar 

  34. M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, H. Wang, E.A. Payzant, and C.R. Hubbard: Thermal properties of Ti3SiC2. J. Phys. Chem. Solids 60, 429 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.B., Zhou, Y.C., Bao, Y.W. et al. Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2. Journal of Materials Research 21, 2401–2407 (2006). https://doi.org/10.1557/jmr.2006.0289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0289

Navigation