Skip to main content
Log in

Doping-induced simultaneous improvement of strength and ductility in ultrafine grained gold wires

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The room temperature tensile properties of ultrafine-grained 25-μm gold wires were evaluated as a function of calcium (Ca) doping at various strain rates ranging between 10−3 and 10−1 s−1. Paradoxically, the increased amount of Ca was found to simultaneously increase the strength and ductility of the Au wires. However, based on scanning electron microscopy and tensile characterization, the grain size distributions, strain-hardening rate, and strain rate sensitivity of Au wires did not change with Ca, thus showing that neither grain refinement nor plastic instability are likely to be responsible for the concurrent improvement of strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.M. Wang, E. Ma, and M.W. Chen: Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80, 2395 (2002).

    Article  CAS  Google Scholar 

  2. C.C. Koch: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Mater. 49, 657 (2003).

    Article  CAS  Google Scholar 

  3. Y.M. Wang and E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 (2004).

    Article  CAS  Google Scholar 

  4. R.Z. Valiev and I.V. Alexandrov: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).

    Article  CAS  Google Scholar 

  5. G. He, J. Eckert, W. Loser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 33, 2 (2003).

    Google Scholar 

  6. A.F. Zimmerman, G. Palumbo, K.T. Aust, and U. Erb: Mechanical properties of nickel silicon carbide nanocomposites. Mater. Sci. Eng., A 328, 137 (2002).

    Article  Google Scholar 

  7. R. Song, D. Ponge, and D. Raabe: Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Scripta Mater. 52, 1075 (2005).

    Article  CAS  Google Scholar 

  8. B.B. Sun, M.L. Sui, Y.M. Wang, G. He, J. Eckert, and E. Ma: Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility. Acta Mater. 54, 1349 (2006).

    Article  CAS  Google Scholar 

  9. American Society for Texting Materials Standard Methods: of Testing Fine Round and Flat Wire for Electron Devices and Lamps, F 219, December 10, 1996.

  10. G. Herklotz, L. Schrapler, C. Simons, J. Reuel, and Y.C. Cho: U.S. Patent No. 6,242,106 B1, June 5, 2001.

    Google Scholar 

  11. D.W. Kang: U.S. Patent No. 5,993,735, November 30, 1999.

    Google Scholar 

  12. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).

    Article  Google Scholar 

  13. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).

    Article  CAS  Google Scholar 

  14. L. Lu, S.X. Li, and K. Lu: An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scripta Mater. 45, 1163 (2001).

    Article  CAS  Google Scholar 

  15. F.D. Torre, H.V. Swygenhoven, and M. Victoria: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).

    Article  Google Scholar 

  16. K. Noguchi, M. Araki, and Y. Ohno: The preparation of transmission electron microscopy specimens of as-drawn gold wire. Scripta Mater. 43, 199 (2000).

    Article  CAS  Google Scholar 

  17. K.S. Kim, J.Y. Song, E.K. Chung, J.K. Park, and S.H. Hong: Relationship between mechanical properties and microstructure of ultra-fine gold bonding wires. Mech. Mater. 38, 119 (2006).

    Article  CAS  Google Scholar 

  18. Y.M. Wang and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 (2004).

    Article  Google Scholar 

  19. G.E. Dieter: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, Boston, 1986).

    Google Scholar 

  20. R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia: Deformation and activation volumes of cryomilled ultrafine-grained aluminium. Acta Mater. 52, 4259 (2004).

    Article  CAS  Google Scholar 

  21. H. Conrad and J. Narayan: Mechanisms for grain size hardening and softening in Zn. Acta Mater. 50, 5067 (2002).

    Article  CAS  Google Scholar 

  22. Binary Alloy Phase Diagram, edited by T.B. Massalski (American Society for Metals, Metal Park, OH, 1986).

    Google Scholar 

  23. W.M. Yin, S.H. Whang, and R.A. Mirshams: Effect of interstitial on tensile strength and creep in nanostructured Ni. Acta Mater. 53, 383 (2005).

    Article  CAS  Google Scholar 

  24. F. Liu and R. Kirchheim: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385 (2004).

    Article  CAS  Google Scholar 

  25. D. Hull and D.J. Bacon: Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Oxford, UK, 2001).

    Google Scholar 

  26. X. Zhang, R. Wang, and C.C. Koch: Mechanical behaviour of bulk ultrafine-grained and nanocrystalline Zn. Mater. Sci. 6, 53 (2004).

    CAS  Google Scholar 

  27. Kulicke & Soffa: Internal report (Kulicke & Soffa [S.E.A.], Singapore, 2004).

    Google Scholar 

  28. R.E. Reed-Hill: Physical Metallurgy Principle, 2nd ed. (D. Van Nostrand Company, New York, 1973).

    Google Scholar 

  29. R.D. Emery and G.L. Povirk: Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater. 51, 2079 (2003).

    Article  CAS  Google Scholar 

  30. R.Z. Valiev: Structure and mechanical properties of ultrafine-grained metals. Mater. Sci. Eng., A 234-236, 59 (1997).

    Google Scholar 

  31. G. Herklotz, L. Schrapler, C. Simons, J. Reuel, and Y.C. Cho: U.S. Patent No. 6,242,106 B1, June 5, 2001.

    Google Scholar 

  32. N. Hosoda, M. Tanaka, and T. Mori: U.S. Patent No. 4,885,135, January 9, 1989.

    Google Scholar 

  33. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, London, 1991).

    Google Scholar 

  34. Chemistry CRC Handbook of 1999-2000 Physics A Ready-Reference Book of Chemical and Physical Data, 81st ed., edited by J.A. Kerr and D.R. Lide (CRC Press, Boca Raton, FL, 2000).

    Google Scholar 

  35. Y.H. Chew, C.C. Wong, C.D. Breach, F. Wulff, T.T. Lin, and C.B. He: Effects of Ca on grain-boundary cohesion in Au ball-bonding wire. Thin Solid Films 5.4, 346 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Chew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chew, Y.H., Wong, C.C., Breach, C.D. et al. Doping-induced simultaneous improvement of strength and ductility in ultrafine grained gold wires. Journal of Materials Research 21, 2345–2353 (2006). https://doi.org/10.1557/jmr.2006.0282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0282

Navigation