Skip to main content
Log in

Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on significant asymmetry phenomena, including failure mode, fracture strength, and plasticity under compression and tension, for Zr- and Ti-based composites containing ductile dendrites. The failure of the Zr-based composite always occurs in a shear mode with a small strength asymmetry and different plasticity under tension and compression. In contrast, the Ti-based composite exhibits a significant high strength asymmetry and zero tensile plasticity although its compressive plasticity is high. We propose that the ratio, α=τ0/σ0 (τ0 and σ0 are the intrinsic shear and cleavage strengths), is a substantial parameter controlling the strength asymmetry and the failure mode of various materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.F. Zhang, G. He, J. Eckert, and L. Schultz: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 (2003).

    Article  CAS  Google Scholar 

  2. C.A. Schuh and A.C. Lund: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 (2003).

    Article  CAS  Google Scholar 

  3. M.H. Yu: Unified Strength Theory and Applications. (Springer, Berlin, Germany, 2001).

    Google Scholar 

  4. J.J. Lewandowski and P. Lowhaphandu: Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos. Mag. 83, 3427 (2002).

    Article  Google Scholar 

  5. M. Ishihara, J. Sumita, T. Shibata, T. Iyoku, and T. Oku: Principle design and data of graphite components. Nucl. Eng. Des. 233, 251 (2004).

    Article  CAS  Google Scholar 

  6. M. Radovic, M.W. Barsoum, T. El-Raghy, S.M. Wiederhorn, and W.E. Luecke: Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. Acta Mater. 50, 1297 (2002).

    Article  CAS  Google Scholar 

  7. T. Engelder and J. Struct: Transitional-tensile fracture propagation: A status report. J. Struct. Geol. 21, 1049 (1999).

    Article  Google Scholar 

  8. R. Asthana, R. Tiwari, and S.N. Tiwari: Compressive properties of zone-directionally solidified β-NiAl and its off-eutectic alloys with chromium and tungsten. Mater. Sci. Eng., A 336, 99 (2002).

    Article  Google Scholar 

  9. J.F. Shackelford, W. Alexander, eds: Mater. Sci. Eng., Handbook. (CRC Press, Florida, 2000), pp. 527–938.

    Google Scholar 

  10. T.H. Courtney, ed: Mechanical Behavior of Materials (McGraw-Hill Company, Inc. 2000).

    Google Scholar 

  11. R.W. Siegel: Synthesis and properties of nanophase materials. Mater. Sci. Eng., A 168, 189 (1993).

    Article  Google Scholar 

  12. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  13. S. Cheng, J.A. Spencer, and W.W. Milligan: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 (2003).

    Article  CAS  Google Scholar 

  14. A.C. Lund and C.A. Schuh: Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 53, 3193 (2005).

    Article  CAS  Google Scholar 

  15. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  16. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  17. R.D. Conner, R.B. Dandliker, and W.L. Johnson: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).

    Article  CAS  Google Scholar 

  18. C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 (1998).

    Article  Google Scholar 

  19. Z.F. Zhang, G. He, J. Eckert, and L. Schultz: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).

    Article  CAS  Google Scholar 

  20. M.A. Meyers, K.K. Chawla: eds: Mechanical Behavior of Materials (Prentice Hall, New Jersey, 1999).

    Google Scholar 

  21. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  22. C.C. Hays, C.P. Kim, and W.L. Johnson: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng., A 304–306, 650 (2001).

    Article  Google Scholar 

  23. G. He, J. Eckert, W. Löser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  24. G. He, J. Eckert, W. Löser, and L. Schultz: Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti-Cu-Ni-Sn-Nb alloys. Acta Mater. 52, 3035 (2004).

    Article  CAS  Google Scholar 

  25. B.B. Sun, M.L. Sui, Y.M. Wang, G. He, J. Eckert, and E. Ma: Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility. Acta Mater. 54, 1349 (2006).

    Article  CAS  Google Scholar 

  26. Z.F. Zhang and J. Eckert: Unified tensile fracture criterion. Phys. Rev. Lett. 94, 094301 (2005).

    Article  CAS  Google Scholar 

  27. H. Zhang, X.F. Pan, Z.F. Zhang, J. Das, K.B. Kim, C. Müller, F. Baier, M. Kusy, A. Gebert, G. He, and J. Eckert: Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites. Z. Metallkd. 96, 1 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. F. Zhang.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to https://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F.F., Zhang, Z.F., Peker, A. et al. Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites. Journal of Materials Research 21, 2331–2336 (2006). https://doi.org/10.1557/jmr.2006.0279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0279

Navigation