Skip to main content
Log in

Immobilization and photocatalytic efficiency of titania nanoparticles on silica carrier spheres

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Immobilization of titania nanoparticles on submicron-sized silica carrier spheres was achieved, and the relevant photocatalytic efficiency was studied. In contrast to the commonly adopted practice of either free suspending nano-sized catalyst particles or immobilized catalyst particles on large supports for photocatalytic applications, the present approach offers a third option, avoiding the disadvantages of the above-mentioned two practices. In the model system of photo-degradation of methylene blue, the photocatalytic efficiency of the present catalyst form was found comparable to that of free-suspending P25 nanoparticles, a popular commercial titania photocatalyst, of the same total catalyst surface area. The present photocatalytic process was found to be diffusion dominant, and its impressive catalytic performance was attributed to the well-separated, smaller than usual titania particles immobilized on the surfaces of submicron-sized silica spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Lee and I.C. Cho: Characterization of TiO2 thin film immobilized on glass tube and its application to PCE photocatalytic destruction. Microchem. J. 68, 215 (2001).

    Article  CAS  Google Scholar 

  2. J.M. Lee, M.S. Kim, and B.W. Kim: Photodegradation of bisphenol-A with TiO2 immobilized on the glass tubes including the UV light lamps. Water Res. 38, 3605 (2004).

    Article  CAS  Google Scholar 

  3. K. Venkata Subba Rao, A. Rachel, M. Subrahmanyam, and P. Boule: Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl. Catal., B: Environ. 46, 77 (2003).

    Article  CAS  Google Scholar 

  4. R.L. Pozzo, J.L. Giombi, M.L. Baltanás, and A.E. Cassano: The performance in a fluidized bed reactor of photocatalysts immobilized onto inert supports. Catal. Today 62, 175 (2000).

    Article  CAS  Google Scholar 

  5. M. Noorjahan, M.P. Pratab Reddy, V. Durga Kumari, B. Lavédrine, P. Boule, and M. Subrahmanyam: Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions. J. Photochem. Photobiol., A: Chem. 156, 179 (2003).

    Article  CAS  Google Scholar 

  6. A. Zertal, D. Molnár-Gábor, M.A. Malouki, T. Sehili, and P. Boule: Photocatalytic transformation of 4-chloro-2-methylphenoxyacetic acid (MCPA) on several kinds of TiO2. Appl. Catal., B: Environ. 49, 83 (2004).

    Article  CAS  Google Scholar 

  7. N.P. Xu, Z.F. Shi, Y.Q. Fan, J. Dong, J. Shi, and M.Z.C Hu: Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind. Eng. Chem. Res. 38, 373 (1999).

    Article  CAS  Google Scholar 

  8. H.J. Kim, Y.G. Shul, and H.S. Han: Photocatalytic properties of silica-supported TiO2. Top. Catal. 35, 287 (2005).

    Article  CAS  Google Scholar 

  9. G. Dagan, S. Sampath, and O. Lev: Preparation and utilization of organically modified silica-titania photocatalysts for decontamination of aquatic environments. Chem. Mater. 7, 446 (1995).

    Article  CAS  Google Scholar 

  10. C. Anderson and A.J. Bard: Improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99, 9882 (1995).

    Article  CAS  Google Scholar 

  11. X. Fu, L.A. Clark, Q. Yang, and M.A. Anderson: Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 30, 647 (1996).

    Article  CAS  Google Scholar 

  12. C. Anderson and A.J. Bard: Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J. Phys. Chem. B 101, 2611 (1997).

    Article  CAS  Google Scholar 

  13. X.T. Gao and I.E. Wachs: Titania-silica as catalysts: Molecular structural characteristics and physico-chemical properties. Catal. Today 51, 233 (1999).

    Article  CAS  Google Scholar 

  14. W. Stober, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  15. X.C. Jiang, T. Herricks, and Y.N. Xia: Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization. Adv. Mater. 15, 1205 (2003).

    Article  CAS  Google Scholar 

  16. Natl. Bur. Stand. (U.S.) Monogr. 25, 7 (1969).

    Google Scholar 

  17. G.C. Chen, C.Y. Kuo, and S.Y. Lu: A general process for preparation of core-shell particles of complete and smooth shells. J. Am. Ceram. Soc. 88, 277 (2005).

    Article  CAS  Google Scholar 

  18. S.Y. Lu and Y.M. Yen: Overall rate constants for diffusion and incorporation in clusters of spheres. J. Chem. Phys. 116, 3128 (2002).

    Article  CAS  Google Scholar 

  19. S.Y. Lu: Patch size effect on diffusion and incorporation in dilute suspension of partially active spheres. J. Chem. Phys. 120, 3997 (2004).

    Article  CAS  Google Scholar 

  20. J.C. Wu and S.Y. Lu: Patch-distribution effect on diffusion-limited process in dilute suspension of partially active spheres. J. Chem. Phys. 124, 24911 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, CY., Lu, SY. Immobilization and photocatalytic efficiency of titania nanoparticles on silica carrier spheres. Journal of Materials Research 21, 2290–2297 (2006). https://doi.org/10.1557/jmr.2006.0275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0275

Navigation