Skip to main content

Advertisement

Log in

Microstructure and interfacial fracture at the cementum-enamel junctions in equine and bovine teeth

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The cementum–enamel junction (CEJ) is a unique interface that plays a critical role in effectively transferring force from the top of the tooth to the jawbone. A comparative study of bovine and equine teeth has been carried out experimentally to establish the relationship among the interfacial structure, fracture resistance, and mechanical functions. The CEJs were analyzed by optical microscopy and scanning electron microscopy (SEM). Microhardness and elastic modulus were measured with a Vickers microhardness tester and a nanoindentation system. A modified cantilever beam technique was used to study CEJ fracture process and the toughness (Gc). It was observed that CEJ is a distinct interface connecting the hard enamel (200–350 kg/mm2) with the soft cementum (∼20–30 kg/mm2). Bovine CEJ was macroscopically flat and smooth. However, under SEM, a close integration of cementum bumps and enamel pits at the 5 μm level and dimples at the 200 nm level were clearly seen. In equine CEJ, the similar flat cementum–enamel interface was interrupted by hemispherical cementum protrusions (average size of 28.3 μm) at high density (340/mm2). Despite the microscopic roughness, bovine CEJ was easy to fracture at relatively low toughness (128 J/m2). The measured toughness for equine CEJ was about seven times that of bovine (1140 J/m2). The high toughness has been attributed to the mechanical interlocking provided by the cementum protrusions. The underlying crack bridging mechanism and the applications to the design of orthopaedic implants are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit: Mechanisms controlling the durability of thermal-barrier coatings. Prog. Mater. Sci. 46, 505 (2001).

    Article  Google Scholar 

  2. R. Wang, C. Mercer, A.G. Evans, C.V. Cooper, H.K. Yoon: Delamination and spalling of diamond-like-carbon tribological surfaces. Diamond Relat. Mater. 11, 1797 (2002).

    Article  CAS  Google Scholar 

  3. R.J. Furlong, J.F. Osborn: Fixation of hip protheses by hydroxyapatite ceramic coatings. J. Bone Joint Surg. 73B, 741 (1991).

    Article  Google Scholar 

  4. J.A.M Clemens, J.G.C Wolke, C.P.A.T Klein, K. de Groot: Fatigue behavior of calcium phosphate coatings with different stability under dry and wet conditions. J. Biomed. Mater. Res. 48, 741 (1999).

    Article  CAS  Google Scholar 

  5. W.L. Jaffe, D.F. Scott: Total hip arthroplasty with hydroxyapatite-coated prostheses. J. Bone Joint Surg. 78A, 1918 (1996).

    Article  Google Scholar 

  6. V. Imbeni, J.J. Kruzic, G.W. Marshall, S.J. Marshall, R.O. Ritchie: The dentin-enamel junction and the fracture of human teeth. Nat. Mater. 4, 229 (2005).

    Article  CAS  Google Scholar 

  7. R.Z. Wang, S. Weiner: Strain-structure relations in human teeth using Moire fringes. J. Biomech. 31, 135 (1998).

    Article  CAS  Google Scholar 

  8. S.N. White, M.L. Paine, W. Luo, M. Sarikaya, H. Fong, Z.K. Yu, Z.C. Li, M.L. Snead: The dentino-enamel junction is a broad transitional zone uniting dissimilar bioceramic composites. J. Am. Ceram. Soc. 83, 238 (2000).

    Article  CAS  Google Scholar 

  9. S.P. Ho, M. Balooch, S.J. Marshall, G.W. Marshall: Local properties of a functionally graded interphase between cementum and dentin. J. Biomed. Mater. Res. 70A, 480 (2004).

    Article  CAS  Google Scholar 

  10. S. Weiner, L. Addadi: Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689 (1997).

    Article  CAS  Google Scholar 

  11. A.R. Ten Cate: Oral Histology: Development, Structure, and Function 5th ed. (Mosby, St. Louis, MO, 1994), p. 218.

    Google Scholar 

  12. G.J. Baker, J. Easley: Equine Dentistry 1st ed. (W.B. Saunders, London, UK, 1999), pp. 3–28.

    Google Scholar 

  13. M.A. Listgarten: A light and electron microscopy study of coronal cementogenesis. Archs Oral Biol. 13, 93 (1968).

    Article  CAS  Google Scholar 

  14. S.J. Jones, A. Boyde: Coronal cementogenesis in the horse. Archs Oral Biol. 19, 605 (1974).

    Article  CAS  Google Scholar 

  15. K. de Groot, J.G.C Wolke, J.A. Jansen: Calcium phosphate coatings for medical implants. Proc Inst. Mech Eng. H. J. Eng. Med. 212, 137 (1998).

    Article  Google Scholar 

  16. J.W. Xie, M.J. Baumann, L.R. McCabe: Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J. Biomed. Mater. Res. 71A, 108 (2004).

    Article  CAS  Google Scholar 

  17. P.B. Mills, J.T. Irving: Coronal cementogenesis in cattle. Archs Oral Biol. 12, 929 (1967).

    Article  CAS  Google Scholar 

  18. S. Kilic, P.M. Dixon, S.A. Kempson: A light microscopic and ultrastructural examination of calcified dental tissues of horses: 4. Cement and the amelocemental junction. Equine Vet. J. 29, 213 (1997).

    Article  CAS  Google Scholar 

  19. J.W. Obreimoff: The splitting strength of mica. Proc. R. Soc. London, A 127, 290 (1930).

    Article  Google Scholar 

  20. B. Lawn: Fracture of Brittle Solids 2nd ed. (Cambridge Univ. Press, Cambridge, UK, 1993), pp. 10, 11, 37.

    Book  Google Scholar 

  21. A.G. Evans, E.A. Charles: Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59, 371 (1976).

    Article  CAS  Google Scholar 

  22. J. Zhang, J.J. Lewandowski: Interfacial fracture-toughness measurement using indentation. J. Mater. Sci. 29, 4022 (1994).

    Article  CAS  Google Scholar 

  23. V. Imbeni, J.J. Kruzic, G.W. Marshall, S.J. Marshall, R.O. Ritchie: The dentin-enamel junction and the fracture of human teeth. Nat. Mater. 4, 229 (2005).

    Article  CAS  Google Scholar 

  24. R.D. Frandson: Anatomy and Physiology of Farm Animals 4th ed. (Lea & Febiger, Philadelphia, PA, 1986), pp. 309–335.

    Google Scholar 

  25. J.D. Bobyn, R.M. Pilliar, H.U. Cameron, G.C. Weatherly: The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 150, 263 (1980).

    Google Scholar 

  26. T.P. Schmalzried, W.H. Harris: The Harris–Galante porous-coated acetabular component with screw fixation—Radiographic analysis of 83 primary hip replacements at a minimum of 5 years. J. Bone Joint Surg. Am. 74A, 1130 (1992).

    Article  Google Scholar 

  27. J.D. Bobyn, G.J. Stackpool, S.A. Hacking, M. Tanzer, J.J. Krygier: Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Brit. 81B, 907 (1999).

    Article  Google Scholar 

  28. M.M. Bornstein, B. Schmid, U.C. Belser, A. Lussi, D. Buser: Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface. Clin. Oral Implants Res. 16, 631 (2005).

    Article  Google Scholar 

  29. R. Wang: Anisotropic fracture in bovine root and coronal dentin. Dent. Mater. 21, 429 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Hu, Y. & Ng, C. Microstructure and interfacial fracture at the cementum-enamel junctions in equine and bovine teeth. Journal of Materials Research 21, 2146–2155 (2006). https://doi.org/10.1557/jmr.2006.0265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0265

Navigation