Skip to main content
Log in

Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aspects of mechanical deformability and biorheology of the human red blood cell are known to play a pivotal role in influencing organ function as well as states of overall health and disease. In this article, consequences of alterations to the membrane and cytoskeletal molecular structure of the human red blood cell are considered in the context of an infectious disease, Plasmodium falciparum malaria, and several hereditary hemolytic disorders: spherocytosis, elliptocytosis, and sickle cell anemia. In each of these cases, the effects of altered cell shape or molecular structure on cell elasticity, motility, and biorheology are examined. These examples are used to gain broad perspectives on the connections among cell and subcellular structure, properties, and disease at the intersections of engineering, biology, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein: Single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 1, 16 (2005).

    Article  Google Scholar 

  2. G. Bao, S. Suresh: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).

    Article  CAS  Google Scholar 

  3. D.E. Ingber: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877 (2002).

    Article  CAS  Google Scholar 

  4. D. Boal: Mechanics of the Cell (Cambridge University Press, Cambridge, UK, 2002).

    Google Scholar 

  5. B.M. Cooke, N. Mohandas, R.L. Coppel: Malaria and the red blood cell membrane. Semin. Hematol. 41, 173 (2004).

    Article  Google Scholar 

  6. L.H. Miller, D.I. Baruch, K. Marsh, O.K. Doumbo: Pathogenic basis of malaria. Nature 415, 673 (2002).

    Article  CAS  Google Scholar 

  7. B.M. Cooke, N. Mohandas, R.L. Coppel: The malaria-infected red blood cell: Structural and functional changes. Adv. Parasitol. 50, 1 (2001).

    Article  CAS  Google Scholar 

  8. L.H. Bannister, J.M. Hopkins, R.E. Fowler, S. Krishna, G.H. Mitchell: A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today 16, 427 (2000).

    Article  CAS  Google Scholar 

  9. K.J. Van Vliet, G. Bao, S. Suresh: The biomechanics toolbox: Experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881 (2003).

    Article  Google Scholar 

  10. A. Evans: Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests. Biophys. J. 43, 27 (1983).

    Article  CAS  Google Scholar 

  11. F.K. Glenister, R.L. Coppel, A.F. Cowman, N. Mohandas, B.M. Cooke: Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99, 1060 (2002).

    Article  CAS  Google Scholar 

  12. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu: Observation of single beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).

    Article  CAS  Google Scholar 

  13. S. Henon, G. Lenormand, A. Richert, F. Gallet: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76, 1145 (1999).

    Article  CAS  Google Scholar 

  14. M. Dao, C.T. Lim, S. Suresh: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259 (2003).

    Article  Google Scholar 

  15. J.P. Mills, L. Qie, M. Dao, C.T. Lim, S. Suresh: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1, 169 (2004).

    CAS  Google Scholar 

  16. J.P. Shelby, J. White, K. Ganesan, P.K. Rathod, D.T. Chiu: A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 100, 14618 (2003).

    Article  CAS  Google Scholar 

  17. C.T. Lim, S. Suresh: (unpublished research), National University of Singapore and Massachusetts Institute of Technology (2006).

    Google Scholar 

  18. R. Suwanarusk, B.M. Cooke, A.M. Dandorp, K. Silamut, J. Sttabongkot, N.J. White: The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J. Infect. Dis. 189, 190 (2004).

    Article  Google Scholar 

  19. P. David and G. Milon: (private communication, Institut Pasteur, Paris, 2006).

    Google Scholar 

  20. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell 4th ed. (Garland, New York, 2002).

    Google Scholar 

  21. S. Eber, S. Lux: Hereditary spherocytosis: Defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin. Hematol. 41, 118 (2004).

    Article  CAS  Google Scholar 

  22. C.F. Vanlair, J.B. Masius, R. Bull: De la microcythemie. Acad. Med. Belgium 5, 515 (1871).

    Google Scholar 

  23. S.W. Eber, A. Pekrun, A. Neufeldt: Prevalence of increased osmotic fragility of erythrocytes in German blood donors: Screening using a modified glycerol lysis test. Ann. Hematol. 64, 88 (1992).

    Article  CAS  Google Scholar 

  24. L.D. Walensky: In Blood: Principles and Practice of Hematology 2nd ed., edited by R.I. Handin, S.E. Lux and T.P. Stossel (Lippincott, Williams & Wilkins, Philadelphia, PA, 2003).

  25. M.R. Clark, N. Mohandas, S.B. Shohet: Osmotic gradient ektocytometry: Comprehensive characterization of red cell volume and surface maintenance. Blood 61, 899 (1983).

    Article  CAS  Google Scholar 

  26. P.G. Gallagher: Hereditary elliptocytosis: Spectrin and protein 4.1R. Semin. Hematol. 41, 142 (2004).

    Article  CAS  Google Scholar 

  27. N. Mohandas, M.R. Clark, B.P. Health: A technique to detect reduced mechanical stability of red cell membranes: Relevance to elliptocytic disorders. Blood 59, 768 (1982).

    Article  CAS  Google Scholar 

  28. D.L. Nelson, M.M. Cox: Principles of Biochemistry 2nd ed. (Garland, New York, 2005).

    Google Scholar 

  29. M. Jones, G. Jones: Advanced Biology (Cambridge University Press, Cambridge, UK, 1997).

    Google Scholar 

  30. M.M. Brandao, A. Fontes, M.L. Barjas-Castro, L.C. Barbosa, F.F. Costa, C.L. Cesar, S.T.O Sead: Optical tweezers for measuring red blood cell elasticity: Application to the study of drug response in sickle cell disease. Eur. J. Haematol. 70, 207 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, S. Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships. Journal of Materials Research 21, 1871–1877 (2006). https://doi.org/10.1557/jmr.2006.0260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0260

Navigation