Skip to main content

Advertisement

Log in

Indentation micromechanics of three-dimensional fibrin/collagen biomaterial scaffolds

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The underlying relationships between the microstructure and time-dependent mechanical properties of hydrated fibrin, collagen, and fibrin/collagen composite materials have been explored using an adaptation of the classical rigid, cylindrical, flat punch loaded normally to a planar specimen surface. A suite of quasi-static elastic and viscoelastic indentation experiments have been conducted with uniformly mixed fibrin, collagen, and fibrin/collagen composites, in addition to macrolayered collagen materials. Coupled with insights obtained from optical and confocal fluorescence microscopy, a simple micromechanics model has been developed for the effect of local microstructural variables on the macroscopic mechanical stiffness. These results demonstrate the efficacy of this technique to efficiently and reproducibly probe hydrated engineered tissue replacement materials for local variations in viscoelastic material behavior without the need for extensive specimen preparation or grips, as well as being suitable for performing directly comparable measurements with explants of human skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Clark: The Molecular and Cellular Biology of Wound Repair, 2nd ed. (Plenum Press, New York, 1996).

    Google Scholar 

  2. B. Tawil: Fibrin and its applications, in An Introduction to Biomaterials. (2006, in press).

    Google Scholar 

  3. J. Weisel: The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem. 112, 267 (2004).

    CAS  Google Scholar 

  4. L.J. Currie, J.R. Sharpe, R. Marti: The use of fibrin glue in skin grafts and tissue-engineered skin replacements: A review. Plast. Reconstr. Surg. 108, 1713 (2001).

    CAS  Google Scholar 

  5. S. Helgerson, T. Seelich, J. Di Orio, B. Tawil, K. Bittner, R. Spaethe: Fibrin. Review, in Encyclopedia of Biomaterials and Biomedical Engineering edited by G. Bowlin, G. Wnek (Marcel Dekker, New York, 2004).

  6. J.D. Ferry, P.R. Morrison: Preparation and properties of serum and plasma proteins. VIII. The conversion of human fibrinogen to fibrin under various conditions. J. Am. Chem. Soc. 388(1947).

  7. F. Henry, M. Nestler: A physical model for a fibrous network and its application to the shear modulus and other data of the fibrin gel. Biophys. Chem. 112, 181 (2004).

    CAS  Google Scholar 

  8. M. Danielsson, D.M. Parks, M.C. Boyce: Constitutive modeling of porous hyperelastic materials. Mech. Mater. 36, 347 (2004).

    Google Scholar 

  9. J.E. Meredith, B. Fazeli, M.A. Schwartz: The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953 (1993).

    CAS  Google Scholar 

  10. W.W. Roberts, O. Kramer, R.W. Rosser, F.H.M Nestler, J.D. Ferry: Rheology of fibrin clots. I. Dynamic viscoelastic properties and fluid permeation. Biophys. Chem. 1, 152 (1974).

    CAS  Google Scholar 

  11. Y.C. Fung: Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. (Springer, New York, 1993).

    Google Scholar 

  12. R.S. Lakes: Viscoelastic measurement techniques: Review article: Viscoelastic measurement techniques. Rev. Sci. Instrum. 75(4), 4 (2004).

    Article  Google Scholar 

  13. L. Han, J.A. Noble, M. Burcher: A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue. Ultrasound Med. Biol. 29(6), 813 (2003).

    Article  Google Scholar 

  14. P. Janmey: A. torsion pendulum for measurement of the viscoelasticity of biopolymers and its application to actin networks. J. Biochem. Biophys. Methods 22, 41 (1999).

    Article  Google Scholar 

  15. D.E. Discher, P. Janmey, Y.L. Wang: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 18 (2005).

    Article  Google Scholar 

  16. R.G. Mooney, C.A. Costales, J.M. Curtin, B. Tawil, and M.C. Shaw: Indentation micromechanics of fibroblast-populated fibrin constructs, in Structure and Mechanical Behavior of Biological Materials edited by P. Fratzl, W.J. Landis, R. Wang, and F.H. Silver (Mater. Res. Soc. Symp. Proc. 874, Warrendale, PA, 2005), L7.10, p. 205.

    CAS  Google Scholar 

  17. R. Hill: Theory of Plasticity (Oxford University Press, Oxford, UK, 1954).

    Google Scholar 

  18. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problems for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  19. J. Loubet, J. Georges, G. Meille: Vickers indentation curves of elastoplastic materials, in Microindentation Techniques in Materials Science and Engineering, edited by P. Blau and B.R. Lawn (ASTM STP 889, 1984).

  20. J.F. Lamethe, P. Sergot, A. Chateauminois, B.J. Briscoe: Contact fatigue behaviour of glassy polymers with improved toughness under fretting wear conditions. Wear 255, 758 (2003).

    CAS  Google Scholar 

  21. M. Bonne, B.J. Briscoe, S. Manimaaran, A. Allen: Characterization of surface abrasion phenomena on poly(methyl methacrylate) surfaces. Wear 254, 55 (2003).

    CAS  Google Scholar 

  22. W.C. Oliver, R. Hutchings, J.B. Pethica: Measurement of hardness at indentation depths as low as 20 nanometres, in Microindentation Techniques in Materials Science and Engineering, edited by P. Blau and B.R. Lawn (ASTM STP 889, 1984).

  23. Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, G.M. Pharr: Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orthop. Res. 20, 806 (2002).

    CAS  Google Scholar 

  24. J.Y. Rho, P. Zioupos, J.D. Currey, G.M. Pharr: Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J. Biomechs. 35, 189 (2002).

    CAS  Google Scholar 

  25. M.J. Silva, M.D. Bridt, A. Fan, J.Y. Rho: Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J. Biomechs. 37, 1639 (2004).

    Google Scholar 

  26. R.K. Korhonen, M. Wong, J. Arokoski, R. Lindgren, H.J. Helminen, E.B. Hunziker, J.S. Jurvelin: Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Med. Eng. Phys. 24, 99 (2002).

    CAS  Google Scholar 

  27. Q.H. Qin, M.V. Swain: A micro-mechanics model of dentin mechanical properties. Biomaterials 25, 5081 (2004).

    CAS  Google Scholar 

  28. O.A. Shergold, N.A. Fleck: Mechanisms of deep penetration of soft solids. Proc. R. Soc. London A 460, 3037 (2004).

    Google Scholar 

  29. L. Gambarotta, R. Massabo, and R. Morbiducci: Mechanical characterization of human skin from in vivo tests and simulation of reconstructive surgery. Proceedings of International Mechanical Engineering Congress and Exposition, Washington, DC, 2003.

    Google Scholar 

  30. L. Gambarotta, R. Massabo, R. Morbiducci: A finite element model for characterizing the mechanical properties of human skin using in vivo data. J. Plast. Reconstruct. Surg. 1(2003).

  31. B. Tawil: Fibrin and its characteristics. Wound Repair and Regeneration Newsletter, November 2, 2003.

    Google Scholar 

  32. K.E. Kadler, D.F. Holmes, J.A. Trotter, J.A. Chapman: Collagen fibril formation. J. Biochem. (Tokyo) 316, 1 (1996).

    CAS  Google Scholar 

  33. J.E. Shigley: Mechanical Engineering Design (McGraw-Hill, New York, 1983).

    Google Scholar 

  34. A. Atala: Methods of Tissue Engineering, 2002 (Academic Press, Elsevier, San Diego, CA, 2002).

    Google Scholar 

  35. S. Cox, M. Marietta-Cole, B. Tawil: Behavior of human dermal fibroblasts in three-dimensional fibrin clots: Dependence on fibrinogen and thrombin concentration. Tissue Eng. 10, 942 (2004).

    Article  CAS  Google Scholar 

  36. T.W. Clyne: An Introduction to Metal Matrix Composites. (Cambridge University Press, Cambridge, UK, 1993).

    Book  Google Scholar 

  37. A.A. Corrin, E.G. Freeman, J.T. Lee, B. Tawil, and M.C. Shaw: unpublished.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Shaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooney, R.G., Costales, C.A., Freeman, E.G. et al. Indentation micromechanics of three-dimensional fibrin/collagen biomaterial scaffolds. Journal of Materials Research 21, 2023–2034 (2006). https://doi.org/10.1557/jmr.2006.0258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0258

Navigation