Skip to main content

Advertisement

Log in

Nanoindentation: Application to dental hard tissue investigations

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the last decade, most publications on the mechanical properties of dental calcified tissues were based on nanoindentation investigation. This technique has allowed a better understanding of the mechanical behavior of enamel, dentin, and cementum at a nanoscale. The indentations are normally carried out using pointed or spherical indenters. Hardness and elastic modulus are measured as a function of indenter penetration depth and from the elastic recovery upon unloading. The unique microstructure of each calcified tissue significantly contributes to the variations in the mechanical properties measured. As complex hydrated biological composites, the relative proportions of the composite components, namely, inorganic material (hydroxyapatite), organic material, and water, determines the mechanical properties of the dental hard tissues. Many pathological conditions affecting dental hard tissues cause changes in mineral levels, crystalline structures, and mechanical properties that may be probed by nanoindentation. This review focuses on relevant nanoindentation techniques and their applications to enamel, dentin, and cementum investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Angker, C. Nockolds, M.V. Swain, N. Kilpatrick: Correlating the mechanical properties to the mineral content of carious dentine: A comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals. Arch. Oral Biol. 49, 369 (2004).

    CAS  Google Scholar 

  2. J. Arends, J. Ruben, W.L. Jongebloed: Dentine caries in vivo: Combined scanning electron microscopic and microradiographic investigation. Caries Res. 23, 36 (1989).

    CAS  Google Scholar 

  3. J.B.D Featherstone, J.M. ten Cate, M. Shariati, J. Arends: Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profile. Caries Res. 17, 385 (1983).

    CAS  Google Scholar 

  4. T. Kodaka, K. Debari, M. Yamada, M. Kuroiwa: Correlation between microhardness and mineral content in sound human enamel. Caries Res. 26, 139 (1992).

    CAS  Google Scholar 

  5. J.J. Ten Bosch, B. Angmar-Mansson: A review of quantitative methods for studies of mineral content of intra-oral incipent carious lesions. J. Dent. Res. 70, 2 (1990).

    Google Scholar 

  6. L. Angker, M.V. Swain, N. Kilpatrick: Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. J. Biomech. 38, 1535 (2005).

    Google Scholar 

  7. M.A. Darendeliler, O.P. Kharbanda, E.K. Chan, P. Srivicharnkul, T. Rex, M.V. Swain, A.S. Jones, P. Petocz: Root resorption and its association with alterations in physical properties, mineral contents and resorption craters in human premolars following application of light and heavy controlled orthodontic forces. Orthod. Craniofac. Res. 7, 79 (2004).

    CAS  Google Scholar 

  8. E. Mahoney, F.S. Ismail, N. Kilpatrick, M. Swain: Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur. J. Oral Sci. 112, 497 (2004).

    Google Scholar 

  9. G.W. Marshall, S. Habelitz, R. Gallagher, M. Balooch, G. Balooch, S.J. Marshall: Nanomechanical properties of hydrated carious human dentin. J. Dent. Res. 80, 1768 (2001).

    CAS  Google Scholar 

  10. S. Habelitz, S.J. Marshall, G.W. Marshall, Jr. M. Balooch: Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 46, 173 (2001).

    CAS  Google Scholar 

  11. L. Angker, M.V. Swain, N. Kilpatrick: Micro-mechanical characterisation of the properties of primary tooth dentine. J. Dent. 31, 261 (2003).

    Google Scholar 

  12. W. Grayson, G.W.J Marshall: Dentine: Microstructure and characterization. Quintessence Int. 24, 606 (1993).

    Google Scholar 

  13. G.W. Marshall Jr. S.J. Marshall, J.H. Kinney, M. Balooch: The dentin substrate: Structure and properties related to bonding. J. Dent. 25, 441 (1997).

    CAS  Google Scholar 

  14. S. Malek, M.A. Darendeliler, M.V. Swain: Physical properties of root cementum: Part I. A new method for 3-dimensional evaluation. Am. J. Orthod. Dentofacial Orthop. 120, 198 (2001).

    CAS  Google Scholar 

  15. P. Srivicharnkul, O.P. Kharbanda, M.V. Swain, P. Petocz, M.A. Darendeliler: Physical properties of root cementum: Part 3. Hardness and elastic modulus after application of light and heavy forces. Am. J. Orthod. Dentofacial Orthop. 127, 168 (2005).

    Google Scholar 

  16. B. Van Meerbeek, G. Willems, J.P. Celis, J.R. Roos, M. Braem, P. Lambrechts, G. Vanherle: Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J. Dent. Res. 72, 1434 (1993).

    Google Scholar 

  17. N.E. Waters: Some mechanical and physical properties of teeth, in Mechanical Properties of Biological Materials, edited by J.F. Vincent and J.D. Curry (Cambridge University Press, Cambridge, UK, 1980), p. 99.

  18. J. Mencik, M. Swain: Micro-indentation tests with pointed indenters. Mater. Forum 18, 277 (1994).

    CAS  Google Scholar 

  19. L. Angker, N. Nijhof, M.V. Swain, N.M. Kilpatrick: Influence of hydration and mechanical characterization of carious primary dentine using an ultra-micro indentation system (UMIS). Eur. J. Oral Sci. 112, 231 (2004).

    Google Scholar 

  20. M. Balooch, I.C. Wu-Magidi, A. Balazs, A.S. Lundkvist, S.J. Marshall, G.W. Marshall, W.J. Siekhaus, J.H. Kinney: Viscoelastic properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation. J. Biomed. Mater. Res. 40, 539 (1998).

    CAS  Google Scholar 

  21. W. Oliver, G. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  22. T. Bell, J. Bendeli, J. Field, M. Swain, E. Thwaite: The determination of surface plastic and elastic properties by ultra micro indentation system. Metrologia 28, 463 (1992).

    Google Scholar 

  23. J.S. Field, M.V. Swain: A simple predictive model for spherical indenter. J. Mater. Res. 8, 297 (1993).

    CAS  Google Scholar 

  24. M. Suganuma, M.V. Swain: Simple method and critical comparison of frame compliance and indenter area function for nanoindentation. J. Mater. Res. 19, 3484 (2004).

    Google Scholar 

  25. S. Poolthong: Determination of the mechanical properties of enamel, dentine and cementum by an ultra micro-identation system. Ph.D. Thesis. University of Sydney, Sydney, Australia (1998).

    Google Scholar 

  26. A. Nanci: Enamel: Composition, formation, and structure, in ten Cates Oral Histology Development, Structure, and Function, edited by A. Nanci (Mosby, St. Louis, MO, 2003) p. 145.

  27. A. Boyde: Amelogenesis and the structure of enamel, in Scientific Foundations of Dentistry, edited by B. Cohen and I. Kramer (Heinenmann Medical Books, London, UK, 1976), p. 335.

  28. P. Anderson, J.C. Elliott: Rates of mineral loss in human enamel during in vitro demineralization perpendicular and parallel to the natural surface. Caries Res. 34, 33 (2000).

    CAS  Google Scholar 

  29. J.L. Cuy, A.B. Mann, K.J. Livi, M.F. Teaford, T.P. Weihs: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 (2002).

    CAS  Google Scholar 

  30. M.F. Ashby, D.R.H Jones: Engineering Materials: An Introduction to Their Properties and Applications, 1st ed. (Pergamon Press, Oxford, UK, 1985) p. 25.

    Google Scholar 

  31. I. Spears: A three-dimensional finite element model of prismatic enamel: A re-appraisal of the data on the Young’s modulus of enamel. J. Dent. Res. 76, 1690 (1997).

    Article  CAS  Google Scholar 

  32. J. Ge, F.Z. Cui, X.M. Wang, H.L. Feng: Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26, 3333 (2005).

    Article  CAS  Google Scholar 

  33. P.R. Wilson, A.D. Beynon: Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography. Arch. Oral Biol. 34, 85 (1989).

    Article  CAS  Google Scholar 

  34. I. Mejare, H. Stenlund: Caries rates for the mesial surface of the first permanent molar and the distal surface of the second primary molar from 6 to 12 years of age in Sweden. Caries Res. 34, 454 (2000).

    Article  CAS  Google Scholar 

  35. F. Lippert, D.M. Parker, K.D. Jandt: Susceptibility of deciduous and permanent enamel to dietary acid-induced erosion studied with atomic force microscopy nanoindentation. Eur. J. Oral Sci. 112, 61 (2004).

    Article  Google Scholar 

  36. M.L. Hunter, N.X. West, J.A. Hughes, R.G. Newcombe, M. Addy: Relative susceptibility of deciduous and permanent dental hard tissues to erosion by a low pH fruit drink in vitro. J. Dent. 28, 265 (2000).

    Article  CAS  Google Scholar 

  37. E. Mahoney, A. Holt, M. Swain, N. Kilpatrick: The hardness and modulus of elasticity of primary molar teeth: An ultra-micro-indentation study. J. Dent. 28, 589 (2000).

    Article  CAS  Google Scholar 

  38. A. Lussi, N. Kohler, D. Zero, M. Schaffner, B. Megert: A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model. Eur. J. Oral Sci. 108, 110 (2000).

    Article  CAS  Google Scholar 

  39. I. Urabe, S. Nakajima, H. Sano, J. Tagami: Physical properties of the dentin-enamel junction region. Am. J. Dent. 13, 129 (2000).

    CAS  Google Scholar 

  40. G. Balooch, G.W. Marshall, S.J. Marshall, O.L. Warren, S.A. Asif, M. Balooch: Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J. Biomech. 37, 1223 (2004).

    CAS  Google Scholar 

  41. G.W. Marshall Jr. M. Balooch, R.R. Gallagher, S.A. Gansky, S.J. Marshall: Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J. Biomed. Mater. Res. 54, 87 (2001).

    CAS  Google Scholar 

  42. M.E. Barbour, D.M. Parker, G.C. Allen, K.D. Jandt: Human enamel dissolution in citric acid as a function of pH in the range 2.30 < or = pH < or = 6.30: A nanoindentation study. Eur. J. Oral Sci. 111, 258 (2003).

    CAS  Google Scholar 

  43. M.E. Barbour, D.M. Parker, K.D. Jandt: Enamel dissolution as a function of solution degree of saturation with respect to hydroxyapatite: A nanoindentation study. J. Colloid Interface Sci. 265, 9 (2003).

    CAS  Google Scholar 

  44. F. Lippert, D.M. Parker, K.D. Jandt: In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J. Colloid Interface Sci. 280, 442 (2004).

    CAS  Google Scholar 

  45. E. Mahoney, J. Beattie, M. Swain, N. Kilpatrick: Preliminary in vitro assessment of erosive potential using the ultra-micro-indentation system. Caries Res. 37, 218 (2003).

    Google Scholar 

  46. T. Attin, D. Vollmer, A. Wiegand, R. Attin, H. Betke: Subsurface microhardness of enamel and dentin after different external bleaching procedures. Am. J. Dent. 18, 8 (2005).

    Google Scholar 

  47. R. de Oliveira, A.F. Paes Leme, M. Giannini: Effect of a carbamide peroxide bleaching gel containing calcium or fluoride on human enamel surface microhardness. Braz. Dent. J. 16, 103 (2005).

    Google Scholar 

  48. R.H. Leonard, E.C. Teixeira, G.E. Garland, A.V. Ritter: Effect on enamel microhardness of two consumer-available bleaching solutions when compared with a dentist-prescribed, home-applied bleaching solution and a control. J. Esthet. Restor. Dent. 17, 343 (2005).

    Google Scholar 

  49. I. Lewinstein, N. Fuhrer, N. Churaru, H. Cardash: Effect of different peroxide bleaching regimens and subsequent fluoridation on the hardness of human enamel and dentin. J. Prosthet. Dent. 92, 337 (2004).

    CAS  Google Scholar 

  50. N. Unlu, F.K. Cobankara, C. Altinoz, F. Ozer: Effect of home bleaching agents on the microhardness of human enamel and dentin. J. Oral Rehabil. 31, 57 (2004).

    CAS  Google Scholar 

  51. M.M. Watanabe, J.A. Rodrigues, G.M. Marchi, G.M. Ambrosano: In vitro cariostatic effect of whitening toothpastes in human dental enamel-microhardness evaluation. Quintessence Int. 36, 467 (2005).

    Google Scholar 

  52. D. Yu, T. Sipos, M.M. Wu, T. Bilbault, M.C. Lynch, C. Naleway: Effect of fluoride/essential oils-containing mouth rinse on the microhardness of demineralized bovine enamel. Am. J. Dent. 17, 216 (2004).

    Google Scholar 

  53. R.R. Seghi, I. Denry: Effects of external bleaching on indentation and abrasion characteristics of human enamel in vitro. J. Dent. Res. 71, 1340 (1992).

    CAS  Google Scholar 

  54. B.R. Hairul Nizam, C.T. Lim, H.K. Chng, A.U. Yap: Nanoindentation study of human premolars subjected to bleaching agent. J. Biomech. 38, 2204 (2005).

    CAS  Google Scholar 

  55. G.C. Lopes, L. Bonissoni, L.N. Baratieri, L.C. Vieira, S. Monteiro, Jr.: Effect of bleaching agents on the hardness and morphology of enamel. J. Esthet. Restor. Dent. 14, 24 (2002).

    Google Scholar 

  56. J.A. Rodrigues, G.M. Marchi, G.M. Ambrosano, H.O. Heymann, L.A. Pimenta: Microhardness evaluation of in situ vital bleaching on human dental enamel using a novel study design. Dent. Mater. 21, 1059 (2005).

    CAS  Google Scholar 

  57. B. Jalevik, G.A. Klingberg: Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int. J. Paediatr. Dent. 12, 24 (2002).

    CAS  Google Scholar 

  58. J.H. Kinney, M. Balooch, S.J. Marshall, G.W. Marshall, Jr. T.P. Weihs: Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J. Biomech. Eng. 118, 133 (1996).

    CAS  Google Scholar 

  59. Y. Hosoya, G.W. Marshall: The nano-hardness and elastic modulus of sound deciduous canine dentin and young premolar dentin: Preliminary study. J. Mater. Sci.: Mater. Med. 16, 1 (2005).

    CAS  Google Scholar 

  60. S. Poolthong, M. Swain, T. Sumii, T. Mori: Effect of tubule orientation on some mechanical properties of dentine. J. Dent. Res. 77, 847 (1998).

    Google Scholar 

  61. D. Pashley, A. Okabe, P. Parham: The relationship between dentine microhardness and tubules density. Endo. Dent. Trauma 1, 176 (1985).

    CAS  Google Scholar 

  62. D.A. Sumikawa, G.W. Marshall, L. Gee, S.J. Marshall: Microstructure of primary tooth dentine. Pediatr. Dent. 21, 439 (2000).

    Google Scholar 

  63. S. Poolthong, D. Low, M. Swain, T. Sumii, T. Mori: Prediction of positional dependence of mechanical properties of dentine. J. Dent. Res. 77, 917 (1998).

    Google Scholar 

  64. S. Habelitz, G.W. Marshall, Jr. M. Balooch, S.J. Marshall: Nanoindentation and storage of teeth. J. Biomech. 35, 995 (2002).

    Google Scholar 

  65. M.F. Burrow, U. Nopnakeepong, S. Phrukkanon: A comparison of microtensile bond strengths of several dentin bonding systems to primary and permanent dentin. Dent. Mater. 18, 239 (2002).

    CAS  Google Scholar 

  66. I.H. el-Kalla, F. Garcia-Godoy: Bond strength and interfacial micromorphology of compomers in primary and permanent teeth. Int. J. Paediatr. Dent. 8, 103 (1998).

    CAS  Google Scholar 

  67. R. Hickel, J.M. Manhart: Glass-ionomer and compomers in pediatric dentistry, in Advances in Glass-Ionomer Cements, edited by C.L. Davidson and I.A. Mjor (Quintessence, Chicago, IL, 1999).

  68. A. Hirayama: Experimental analytical electron microscopic studies on the quantitative analysis of elemental concentrations in biological thin specimens and its application to dental science. Shikwa Gakuho 90, 1019 (1990).

    CAS  Google Scholar 

  69. J. Arends, D. Inaba, J. Ruben: Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization. Adv. Dent. Res. 11, 403 (1997).

    CAS  Google Scholar 

  70. L. Angker, C. Nockolds, M.V. Swain, N. Kilpatrick: Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging. Arch. Oral Biol. 49, 99 (2004).

    Google Scholar 

  71. G.W. Marshall, N. Yucel, M. Balooch, J.H. Kinney, S. Habelitz, S.J. Marshall: Sodium hypochlorite alterations on dentin and dentin collagen. Surf. Sci. 491, 444 (2001).

    CAS  Google Scholar 

  72. B. Kahler, M.V. Swain, A. Moule: Fracture toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. J. Biomech. 36, 229 (2003).

    Google Scholar 

  73. M. Toledano, R. Osorio, E. Osorio, C. Prati, R.M. Carvalho: Microhardness of acid-treated and resin infiltrated human dentine. J. Dent. 33, 349 (2005).

    CAS  Google Scholar 

  74. B. Berkovitz, G. Holland, B. Moxham: Oral Anatomy, Histology and Embryology, 3rd ed. (Mosby, St. Louis, MO, 2002), p. 168.

    Google Scholar 

  75. S.P. Ho, H. Goodis, M. Balooch, G. Nonomura, S.J. Marshall, G. Marshall: The effect of sample preparation technique on determination of structure and nanomechanical properties of human cementum hard tissue. Biomaterials 25, 4847 (2004).

    Article  CAS  Google Scholar 

  76. S.P. Ho, M. Balooch, H.E. Goodis, G.W. Marshall, S.J. Marshall: Ultrastructure and nanomechanical properties of cementum dentin junction. J. Biomed. Mater. Res. A 68, 343 (2004).

    Article  CAS  Google Scholar 

  77. S. Malek, M.A. Darendeliler, T. Rex, O.P. Kharbanda, P. Srivicharnkul, M.V. Swain, P. Petocz: Physical properties of root cementum: Part 2. Effect of different storage methods. Am. J. Orthod. Dentofacial Orthop. 124, 561 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Swain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angker, L., Swain, M.V. Nanoindentation: Application to dental hard tissue investigations. Journal of Materials Research 21, 1893–1905 (2006). https://doi.org/10.1557/jmr.2006.0257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0257

Navigation