Skip to main content
Log in

Multiscale mechanical characterization of biomimetic physically associating gels

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical response of living tissue is important to understanding the injury-risk associated with impact events. Often, ballistic gelatin or synthetic materials are developed to serve as tissue surrogates in mechanical testing. Unfortunately, current materials are not optimal and present several experimental challenges. Bulk measurement techniques, such as compression and shear testing geometries, do not fully represent the stress states and rate of loading experienced in an actual impact event. Indentation testing induces deviatoric stress states as well as strain rates not typically available to bulk measurement equipment. In this work, a ballistic gelatin and two styrene-isoprene triblock copolymer gels are tested and compared using both macroscale and microscale measurements. A methodology is presented to conduct instrumented indentation experiments on materials with a modulus far below 1 MPa. The synthetic triblock copolymer gels were much easier to test than the ballistic gelatin. Compared to ballistic gelatin, both copolymer gels were found to have a greater degree of thermal stability. All of the materials exhibit strain-rate dependence, although the magnitude of dependence was a function of the loading rate and testing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Fackler, J.A. Malinowski: The wound profile: A visual method for quantifying gunshot wound components. J. Trauma-Injury Infection Crit. Care 25, 522 (1985).

    Article  CAS  Google Scholar 

  2. M.L. Fackler, J.S. Surinchak, J.A. Malinowski, R.E. Bowen: Bullet fragmentation: A major cause of tissue disruption. J. Trauma-Injury Infection Crit. Care 24, 35 (1984).

    Article  CAS  Google Scholar 

  3. K.E. Simmonds, P. Matic, M. Chase, and A. Leung: 2004 NRL Review.http://www.nrl.navy.mil.

  4. P.J. Biermann, E.M. Ward, R.P. Cain, B. Carkhuff, A.C. Merkle, J.C. Roberts: Development of a physical human surrogate torso model for ballistic impact and blast. J. Adv. Mater. 38, 3 (2006).

    Google Scholar 

  5. L.G. Hole: Anatomical models based on gelatin and the influence of garmets on impact damage. (Shoe & Allied Trade Research Association, Satra House, Kettering, North Hamptonshire, UK, 1980).

    Google Scholar 

  6. Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, edited by H. Abe, K. Hayashi, and M. Sato (Springer-Verlag, Tokyo, Japan, 1996).

    Google Scholar 

  7. N.C. Nicholas, J.R. Welsch: Ballistic Gelatin (Institute for Non-Lethal Defense Technologies Report, Penn State Applied Research Laboratory, Happy Valley, PA, 2004).

    Google Scholar 

  8. A.J. Dzieman: A Provisional Casualty Criteria for Fragments and Projectiles, Edgewood Arsenal Maryland Report #2391 (U.S. Army, Edgewood, MD, 1960).

    Google Scholar 

  9. J.J. Amato, L.J. Billy, R.P. Gruber, N.S. Lawson, N.M. Rich: Vascular injuries: An experimental study of high and low velocity missile wounds. Arch. Surg. 101, 167 (1970).

    Article  CAS  Google Scholar 

  10. M.L. Fackler: Wound ballistics: A target for error. Int. Def. Rev. 8, 895 (1988).

    Google Scholar 

  11. T.P. Lodge, K.J. Hanley, B. Pudil, V. Alahapperuma: Phase behavior of block copolymers in a neutral solvent. Macromolecules 36, 816 (2003).

    Article  CAS  Google Scholar 

  12. K.J. Hanley, T.P. Lodge, C.I. Huang: Phase behavior of a block copolymer in solvents of varying selectivity. Macromolecules 33, 5918 (2000).

    Article  CAS  Google Scholar 

  13. H. Watanabe, S. Kuwahara, T. Kotaka: Rheology of styrene-butadiene-styrene triblock copolymer in n-tetradecane systems. J. Rheol. 28, 393 (1984).

    Article  CAS  Google Scholar 

  14. T. Sato, H. Watanabe, K. Osaki: Thermoreversible physical gelation of block copolymers in a selective solvent. Macromolecules 33, 1686 (2000).

    Article  CAS  Google Scholar 

  15. J.R. Quintana, E. Diaz, I. Katime: Influence of the copolymer molar mass on the physical gelation of triblock copolymers in a selective solvent of the middle block. Macromolecules 30, 3507 (1997).

    Article  CAS  Google Scholar 

  16. P.L. Drzal, K.R. Shull: Origins of mechanical strength and elasticity in thermally reversible acrylic triblock copolymer gels. Macromolecules 36, 2000 (2003).

    Article  CAS  Google Scholar 

  17. J.H. Laurer, J.F. Mulling, S.A. Khan, R.J. Spontak, R. Bukovnik: Thermoplastic elastomer gels. I. Effects of composition and processing on morphology and gel behavior. J. Polym. Sci., Part B: Polym. Phys. 36, 2379 (1998).

    Article  CAS  Google Scholar 

  18. J.H. Laurer, J.F. Mulling, S.A. Khan, R.J. Spontak, R. Bukovnik: Thermoplastic elastomer gels. II. Effects of composition and temperature on morphology and gel rheology. J. Polym. Sci., Part B: Polym. Phys. 36, 2513 (1998).

    Article  CAS  Google Scholar 

  19. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  20. K.L. Johnson: Contact Mechanics (Cambridge University Press, New York, 1985).

    Book  Google Scholar 

  21. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  22. M.R. VanLandingham, N.K. Chang, P.L. Drzal, C.C. White, S.H. Chang: Viscoelastic characterization of polymers using instrumented indentation I. Quasi-static testing. J. Polym. Sci., Part B: Polym. Phys. 43, 1794 (2005).

    Article  CAS  Google Scholar 

  23. C.C. White, M.R. VanLandingham, P.L. Drzal, N.K. Chang, S.H. Chang: Viscoelastic characterization of polymers using instrumented indentation II. Dynamic testing. J. Polym. Sci., Part B: Polym. Phys. 43, 1812 (2005).

    Article  CAS  Google Scholar 

  24. L. Cheng, X. Xia, W. Yu, L.E. Scriven, W.W. Gerberich: Flat-punch indentation of viscoelastic material. J. Polym. Sci., Part B: Polym. Phys. 38, 10 (2000).

    Article  CAS  Google Scholar 

  25. M.L. Oyen, R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).

    Article  CAS  Google Scholar 

  26. N.M. Vriend, A.P. Kren: Determination of the viscoelastic properties of elastomeric materials by the dynamic indentation method. Polym. Test. 23, 369 (2004).

    Article  CAS  Google Scholar 

  27. A.C. Fischer-Cripps: Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 19, 2981 (2004).

    Article  CAS  Google Scholar 

  28. M.R. VanLandingham, T.F. Juliano, M.J. Hagon: Measuring tip shape for instrumented indentation using atomic force microscopy. Meas. Sci. Technol. 16, 2173 (2005).

    Article  CAS  Google Scholar 

  29. E.H. Lee, J.R.M Radok: The contact problem for viscoelastic bodies. Trans. ASME 27, 438 (1960).

    Article  Google Scholar 

  30. T.C.T Ting: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).

    Article  Google Scholar 

  31. Engineering with Rubber: How to Design Rubber Components edited by A.N. Gent (Hanser Publishers, New York, 1992).

    Google Scholar 

  32. B.N. Lucas: An experimental investigation of creep and viscoelastic properties using depth-sensing indentation techniques. Ph.D. Dissertation, The University of Tennessee, Knoxville, TN (1997).

    Google Scholar 

  33. N. Conte: Dynamic mechanical characterization of very soft polymeric materials using nanoindentation. Masters Thesis, The University of Tennessee, Knoxville, TN (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. VanLandingham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juliano, T.F., Forster, A.M., Drzal, P.L. et al. Multiscale mechanical characterization of biomimetic physically associating gels. Journal of Materials Research 21, 2084–2092 (2006). https://doi.org/10.1557/jmr.2006.0254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0254

Navigation