Skip to main content
Log in

Crystal growth via spiral motion in abalone shell nacre

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a structural feature of nacre in the red abalone shell: micrometer-scale screw dislocations in the aragonite layers and resultant growth via spiral motion. Compared to typical ionic or covalent crystals, nacre contains 106 screw dislocations per square centimeter, a difference of three orders of magnitude. Using electron microscopy, ion microscopy, and an in situ nano-manipulator, we studied the structure of screw dislocation cores in detail. We considered that these screw dislocations contribute significantly to the strengthening mechanisms that lead to nacre’s extraordinary work of fracture, which is three orders of magnitude greater than that of aragonite and other monolithic crystals. This work suggests that the lamellar layers of aragonite propagate via a large number of continuous spiral growth domains as the “stacks of coins” become confluent. This model may provide a basis for creating new comparable micro/nanocomposites through synthetic or biomineralization means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weiner, H.D. Wagner: The material bone: Structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 (1998).

    Article  CAS  Google Scholar 

  2. Biomimetics, Design and Processing of Materials, edited by M. Sarikaya and I.A. Aksay (American Institute of Physics, 1996), p. 35.

    Google Scholar 

  3. S. Mann: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, UK, 2001), p. 6.

    Google Scholar 

  4. N. Yao, R.Z. Wang, A.Y. Ku, D.A. Saville, I.A. Aksay: Nanostructured bio-inspired materials, in Nanophase and Nanostructured Materials, Vol. 2, edited by Z.L. Wang, Y. Liu and Z. Zhang (Kluwer-Tsinghua University Press, Beijing, People’s Republic of China, 2001), p. 237.

    Google Scholar 

  5. A.P. Jackson, J.F.V Vincent, R.M. Turner: The mechanical design of nature. Proc. R. Soc. London, B: Biol. Sci. 234, 415 (1988).

    Article  Google Scholar 

  6. J.D. Currey: Mechanical properties of mother of pearl in tension. Proc. R. Soc. London, B: Biol. Sci. 196, 443 (1977).

    Article  Google Scholar 

  7. N. Yao, D.J. Markiewicz, I.A. Aksay: Structural details as clues to understanding nacre formation. Microsc. Microanal. 2 (6 Suppl.), 896 (2000).

    Article  Google Scholar 

  8. R.Z. Wang, Z.G. Suo, A.G. Evans, N. Yao, I.A. Aksay: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).

    Article  CAS  Google Scholar 

  9. L. Treccani, S. Koshnavaz, S. Blank, K. von Roden, U. Schulz, I. Weiss, K. Mann, M. Radmacher, M. Fritz: Biomineralizing proteins with emphasis on invertebratemineralized structures, in Biopolymers, edited by Fhnestock and Steinbuchl (Wiley-VCH-Verlag, Weinheim, Germany 2003), p. 289.

  10. I.A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P.M. Eisenberger, S.M. Gruner: Biomimetic pathways for assembling inorganic thin films. Science 273, 892 (1996).

    CAS  Google Scholar 

  11. F. Song, A.K. Soh, Y.L. Bai: Structural and mechanical properties of the organic matrix layers on nacre. Biomaterials 24, 3623 (2003).

    Article  CAS  Google Scholar 

  12. S. Blank, M. Arnoldi, S. Khoshnavaz, L. Treccani, M. Kuntz, K. Mann, G. Grathwohl, M. Fritz: The nacre protein perlucin nucleates growth of calcium carbonate crystal. J. Microsc. 212, 280 (2003).

    Article  CAS  Google Scholar 

  13. C.M. Zaremba, A.M. Belcher, M. Fritz, Y. Li, S. Mann, P.K. Hansma, D.E. Morse, J.S. Speck, G.D. Stucky: Critical transitions in the biofabrication of abalone shells and flat pearls. Chem. Mater. 8, 679 (1996).

    Article  CAS  Google Scholar 

  14. G. Bevelander, H. Nakahara: An electron microscope study of formation of cacreous layer in shell of certain bivalve molluscs. Calc. Tiss. Res. 3, 84 (1969).

    Article  CAS  Google Scholar 

  15. H. Nakahara: An electron microscope study of the growing surface or nacre in two gastropod species. Venus 38, 205 (1979).

    Google Scholar 

  16. D.E. Morse, M.A. Cariolou, G.D. Stucky, C.M. Zaremba, and P.K. Hansma: Genetic coding in biomineralization of microlaminate composites, in Biomolecular Materials, edited by C. Viney, S.T. Case, and J.H. Waite (Mater. Res. Soc. Symp. Proc. 292, Pittsburgh, PA, 1993), p. 59.

  17. T.E. Schaffer, C. Ionescu-Zanetti, R. Proksch, M. Fritz, D.A. Walters, N. Almqvist, C.M. Zaremba, A.M. Belcher, B.L. Smith, G.D. Stucky, D.E. Morse, P.K. Hansma: Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731 (1997).

    Article  Google Scholar 

  18. K.S. Katti, D.R. Katti, S.M. Pradhan, A. Bhosle: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097 (2005).

    Article  CAS  Google Scholar 

  19. A.G. Evans, Z.G. Suo, R.Z. Wang, I.A. Aksay, M.Y. He, J.W. Hutchinson: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001).

    Article  CAS  Google Scholar 

  20. O.H. Wyatt, D. Dew-Hughes: in Metals, Ceramics, and Polymers, (Cambridge Univ. Press, Cambridge, UK, 1974), p. 347.

    Google Scholar 

  21. W. Hayden, W.G. Moffatt, J. Wulff: In Structure and Properties of Materials Vol. 3 (John Wiley and Sons, New York, 1965), p. 71.

    Google Scholar 

  22. N. Watabe: The observation of the surface structure of the cultured pearls relating to color and luster. Rep. Fac. Fish. Pref. Univ. Mie. 2, 18 (1955).

    Google Scholar 

  23. S.W. Wise, J. deVilliers: Scanning electron microscopy of molluscan shell ultrastructures: Screw dislocations in pelecypod nacre. Trans. Am. Micro. Soc. 90, 376 (1971).

    Article  Google Scholar 

  24. D.R. Askeland, P.P. Phulé: The Science and Engineering of Materials, 4th ed. (Brooks/Cole, Pacific Grove, CA, 2003), p. 148.

    Google Scholar 

  25. H.J. Qi, B.J.F Bruet, J.S. Palmer, C. Ortiz, M.C. Boyce: Micromechanics and macromechanics of the tensile deformation of nacre, in Mechanics of Biological Tissues, edited by G.A. Holzapfel and R.W. Ogden (Springer-Verlag, Graz, Austria, 2005), p. 175.

  26. B.J.F Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc trochus niloticus. J. Mater. Res. 20, 2400 (2005).

    Article  CAS  Google Scholar 

  27. M. Sarikaya: An introduction to biomimetics—A structural viewpoint. Microsc. Res. Tech. 27, 360 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, N., Epstein, A. & Akey, A. Crystal growth via spiral motion in abalone shell nacre. Journal of Materials Research 21, 1939–1946 (2006). https://doi.org/10.1557/jmr.2006.0252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0252

Navigation