Skip to main content
Log in

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic nastic structures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nastic structures are synthetic constructs capable of controllable deformation and shape change similar to plant motility, designed to imitate the biological process of nastic movement found in plants. This paper considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array of cylindrical microhydraulic actuators embedded in a polymeric plate. Non-uniform expansion/contraction of the actuators in the array may yield an overall shape change resulting in structural morphing. Actuator expansion/contraction is achieved through pressure changes produced by active transport across a bilayer membrane. The active transport process relies on ion-channel proteins that pump sucrose and water molecules across a plasma membrane against the pressure gradient. The energy required by this process is supplied by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active transport process, the paper presents an analysis of the microhydraulic actuator mechanics predicting the resulting displacement and output energy. Experimental demonstration of fluid transport through a protein transporter follows this discussion. The bilayer membrane is formed from 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt), 1-Palmitoyl-2-Oleoyl-sn-Glycero- 3-Phosphoethanolamine lipids to support the AtSUT4 H+-sucrose cotransporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Leo, V.B. Sundaresan, H. Tan, and J. Cuppoletti: Investigation on high energy density materials utilizing biological transport mechanisms, in Proceedings of ASME International Mechanical Engineering Conference & Exposition, November 13–20, 2004, Anaheim, CA. ASME-IMECE2004-60714.

    Google Scholar 

  2. V.B. Sundaresan and D. Leo: Chemomechanical model of biological membranes for actuation mechanisms, in Proceedings of SPIE-2005 Smart Structures Conference, March 3–8, 2005, San Diego, CA. SPIE-5761-15.

    Google Scholar 

  3. V. Giurgiutiu, D. Leo, V.B. Sundaresan, and L. Matthews: Concepts for energy and power analysis in nastic structures, in Proceedings of ASME International Mechanical Engineering Conference & Exposition, November 5–11, 2005, Orlando, FL. ASME-IMECE2005-82786.

    Google Scholar 

  4. R. Morillon, D. Lienard, M. Chrispeels, J. Lassalles: Rapid movements of plants organs require solute-water cotransporters or contractile proteins. Plant Physiol. 127, 720 (2001).

    Article  CAS  Google Scholar 

  5. Y. Forterre, J.M. Skotheim, J. Dumais, L. Mahadevan: How the venus flytrap snaps. Nature 433, 421 (2005).

    Article  CAS  Google Scholar 

  6. L. Weiland and C. Homison: Coupled transport/hyperelastic model for nastic materials, in Proceedings of ASME International Mechanical Engineering Conference & Exposition, November 5–11, 2005, Orlando, FL. ASME-IMECE2005-79387.

    Google Scholar 

  7. K. Maute, M. Dunn, M. Howard, R. Bischel, and J. Pajot: Multiscale design of vascular plants, in Proceedings of ASME International Mehcanical Engineering Conference & Exposition, November 5–11, 2005, Orlando, FL, ASME-IMECE2005-82203, 2005.

    Google Scholar 

  8. D. Leo and V.B. Sundaresan: Experimental investigation for chemo-mechanical actuation using biological transport mechanisms, in Proceedings of ASME International Mechanical Engineering Conference & Exposition, November 5–11, Orlando, FL. ASME-IMECE2005-81366.

  9. S. Cronlund, I. Forseth: Heliotropic leaf movement response To H+/ATPase activation, H+/ATPase inhibition, and K+ channel inhibition in vivo. Am. J. Bot. 82, 1507 (1995).

    Article  CAS  Google Scholar 

  10. P. Rea, R. Poole: Proton-translocating inorganic pyrophosphatase in red beet (Beta Vulgaris L.) tonoplast vesicles. Plant Physiol. 77, 46 (1985).

    Article  CAS  Google Scholar 

  11. D. Nelson, M. Cox: Lehninger Principles of Biochemistry (Worth Publishers, 2000).

    Google Scholar 

  12. I. Segel: Biochemical Calculations—How to Solve Mathematical Problems in Biochemistry (John Wiley & Sons, New York, 1976).

    Google Scholar 

  13. A.B. Hope: Ion Transport and Membranes—A Biophysical Outline (University Park Press, Baltimore, MD, 1971).

    Google Scholar 

  14. J.H. Quastel: Transport at cell membranes and regulation of cell metabolism, in Membrane Transport and Metabolism (Czechoslovak Academy of Sciences, 1960).

    Google Scholar 

  15. Cg. Massonnet: Two dimensional problems, in Handbook of Engineering Mechanics edited by W. Flugge (McGraw-Hill, 1962), Chap. 37.

  16. S. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells (McGraw-Hill, New York, 1959).

    Google Scholar 

  17. K. Wan, S. Guo, D. Dillard: A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425, 150 (2003).

    Article  CAS  Google Scholar 

  18. K. Wan, S. Lim: The bending to stretching transition of a pressurized blister test. Int. J. Fract. 92, L43 (1998).

    Article  Google Scholar 

  19. D. Cadogan, T. Smith, F. Uhelsky, M. MacKusick: Morphing inflatable wing development for compact package unmanned aerial vehicles. Am. Inst. Aeronautics Astronautics—Adaptive Struct. Forum (2005).

    Google Scholar 

  20. L. Bürkle, J.M. Hibberd, W.P. Quick, B.H. Christina Khn, W.B. Frommer: The H+-sucrose cotransporter ATSUT1: Is essential for sugar export from tobacco leaves. Plant Physiol. 118, 5968 (1998).

    Article  Google Scholar 

  21. C. Steinem, A. Janshoff, W.P. Ulrich, M. Sieber, H.J. Galla: Impedance analysis of supported lipid bilayer membranes: A scrutiny of different preparation techniques. Molec. Cell. Bio. Lett. 1279, 169 (1996).

    Google Scholar 

  22. D. Voet, J.G. Voet: Biochemistry (John Wiley & Sons, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, L., Sundaresan, V.B., Giurgiutiu, V. et al. Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic nastic structures. Journal of Materials Research 21, 2058–2067 (2006). https://doi.org/10.1557/jmr.2006.0250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0250

Navigation