Skip to main content

Advertisement

Log in

Mapping the structure, composition and mechanical properties of bamboo

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure, composition, and mechanical response of Australian bamboo were investigated. The graded structure, composition, and mechanical properties were confirmed by depth profiles obtained using synchrotron radiation diffraction and Vickers indentation. The mechanical performance of bamboo was strongly dependent on age. Results indicated that young bamboo has a higher strength, elastic stiffness, and fracture toughness than its older counterpart does. In addition, the hardness of bamboo is both load dependent and time dependent as a result of an expanding interfacial damage zone and indentation creep, respectively. In addition to fiber debonding, crack deflection and crack-bridging are the major energy dissipative processes for imparting a high toughness in bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Liese: The structure of bamboo in relation to its properties and utilization, in Proc Int. Symp. Industrial Use of Bamboo, Beijing, China, (1992), pp. 95–100.

    Google Scholar 

  2. K. Ghavami: Bamboo as reinforcement in structural concrete elements. Cem. Concr. Compos. 27, 637 (2005).

    Article  CAS  Google Scholar 

  3. F. Nogata, H. Takahashi: Intelligent functionally graded material: Bamboo. Compos. Eng. 5, 743 (1995).

    Google Scholar 

  4. S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, H. Shimizu: Fiber texture and mechanical graded structure of bamboo. Composites Part B 28, 13 (1997).

    Google Scholar 

  5. S. Amada, S. Untao: Fracture properties of bamboo. Composites Part B 32, 451 (2001).

    Google Scholar 

  6. S.H. Li, Q.Y. Zeng, Y.L. Xiao, S.Y. Fu, B.L. Zhou: Biomimicry of bamboo bast fiber with engineering composite materials. Mater. Sci. Eng., C 3, 125 (1995).

    Google Scholar 

  7. M.F. Ashby: Materials Selection in Mechanical Design (Pergamon Press, Oxford, UK, 1992).

    Google Scholar 

  8. U.G.K Wegst, H.R. Shercliff, M.F. Ashby: The Structure and Properties of Bamboo as an Engineering Material (University of Cambridge, Cambridge, UK, 1993).

    Google Scholar 

  9. S.C. Lakkad, J.M. Patel: Mechanical properties of bamboo, a natural composite. Fibre Sci. Technol. 14, 319 (1981).

    Google Scholar 

  10. P. van der Lugt, A.A.J.F. van den Dobbelsteen, J.J.A Janssen: An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Constr. Building Mater. 20, 648 (2006).

    Article  Google Scholar 

  11. K.F. Chung, W.K. Yu: Mechanical properties of structural bamboo for bamboo scaffoldings. Eng. Struct. 24, 429 (2002).

    Article  Google Scholar 

  12. W.K. Yu, K.F. Chung, S.L. Chan: Axial buckling of bamboo columns in bamboo scaffolds. Eng. Struct. 27, 61 (2005).

    Article  Google Scholar 

  13. W. Yao, Z. Li: Flexural behavior of bamboo-fiber-reinforced mortar laminates. Cem. Concr. Res. 33, 15 (2003).

    Article  CAS  Google Scholar 

  14. R.S.P Coutts, Y. Ni: Autoclaved bamboo pulp fibre reinforced cement. Cem. Concr. Compos. 17, 99 (1995).

    Article  CAS  Google Scholar 

  15. K. Ghavami: Bamboo as reinforcement in structural concrete elements. Cem. Concr. Compos. 27, 637 (2005).

    Article  CAS  Google Scholar 

  16. K. Ghavami: Ultimate load behaviour of bamboo reinforced lightweight concrete beams. Cem. Concr. Compos. 17, 281 (1995).

    Article  CAS  Google Scholar 

  17. H. Ismail, S. Shuhelmy, M.R. Edyham: The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur. Polym. J. 38, 39 (2002).

    Article  CAS  Google Scholar 

  18. H. Ismail, M.R. Edyham, B. Rirjosentono: Bamboo fiber filled natural rubber composites: The effects of filler loading and bonding agent. Polym. Test. 21, 139 (2002).

    Article  CAS  Google Scholar 

  19. X. Chen, Q. Guo, Y. Mi: Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. J. Appl. Polym. Sci. 69, 1891 (1998).

    Article  CAS  Google Scholar 

  20. M.M. Thwe, K. Liao: Environmental effects on bamboo–glass/polypropylene hybrid composites. J. Mater. Sci. 38, 363 (2003).

    CAS  Google Scholar 

  21. M.M. Thwe, K. Liao: Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Composites A 33, 43 (2002).

    Google Scholar 

  22. F.G. Shin, M.W. Yipp: Analysis of the mechanical properties and microstructure of bamboo-epoxy composites. J. Mater. Sci. 3483, 24 (1989).

    Google Scholar 

  23. S. Jain, R. Kumar, U.C. Jindal: Development and fracture mechanism of the bamboo/polyester resin composite. J. Mater. Sci. Lett. 12, 558 (1993).

    CAS  Google Scholar 

  24. S.H. Li, S.Y. Fu, B.L. Zhou, Q.Y. Zeng, X.R. Bao: Reformed bamboo and reformed bamboo/aluminium composite. J. Mater. Sci. 29, 5990 (1994).

    CAS  Google Scholar 

  25. T.Y. Lo, H.Z. Cui, H.C. Leung: The effect of fiber density on strength capacity of bamboo. Mater. Lett. 58, 2595 (2004).

    CAS  Google Scholar 

  26. A.C. Sekhar, R.K. Bhartari: Studies of strength of bamboo. A note on its mechanical behaviour. Ind. For. 86, 296 (1960).

    Google Scholar 

  27. A.C. Sekhar, B.S. Rawat, R.K. Bhartari: Strength of bamboos. Bambusa nutans. Ind. For. 88, 67 (1962).

    Google Scholar 

  28. G. Lim, W. Parrish, C. Ortish, M. Belletto, M. Hart: Grazing incidence synchrotron diffraction method for analyzing thin films. J. Mater. Res. 2, 471 (1987).

    CAS  Google Scholar 

  29. I.M. Low: Depth-profiling of crystal structure, texture and microhardness in a functionally-graded tooth enamel. J. Am. Ceram. Soc. 87, 2125 (2004).

    CAS  Google Scholar 

  30. J. Barry: J. Am. Chem. Soc. 58, 333 (1936).

    Article  CAS  Google Scholar 

  31. I.M. Low: Effects of load and time on the hardness of a viscoelastic polymer. Mater. Res. Bull. 33, 1753 (1998).

    Article  CAS  Google Scholar 

  32. A.G. Atkins, Y.W. Mai: Elastic and Plastic Fracture (Ellis Horwood/John Wiley, Chichester, UK, 1988).

    Google Scholar 

  33. B.A. Latella, K.T. Short: Tension-driven cracking of an expanded austenite layer. J. Mater. Sci. 39, 4321 (2004).

    Article  CAS  Google Scholar 

  34. I.M. Low: Vickers contact damage in micro-layered Ti3SiC2. J. Eur. Ceram. Soc. 18, 709 (1998).

    Article  CAS  Google Scholar 

  35. M. Rowles, D. Lawrence, I.M. Low, P. Schmidt, and J. Lane: Indentation responses and failure micromechanisms of cellulose-fibre-mylar/reinforced epoxy laminates, in Proc. Int. Workshop on Fracture Mechanics & Advanced Engineering Materials, edited by L. Ye and Y.W. Mai (Sydney University Press, Sydney, Australia), pp. 343–350.

  36. D. Lawrence, G. Paglia, and I.M. Low: Indentation responses and damage of polymeric composites, in Proc. Structural Integrity and Fracture 2000, edited by G. Heness (University of Technology, Syndey, Australia) pp. 119–127 (2000).

  37. I.M. Low, M. McGrath, D. Lawrence, P. Schmidt, J. Lane, B.A. Latella: Mechanical and fracture properties of cellulose fibre reinforced epoxy laminates (in press).

  38. B. Ji, H. Gao: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963 (2004).

    Article  Google Scholar 

  39. Z. Tang, N.A. Kotov, S. Magonov, B. Ozturk: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Low.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, I.M., Che, Z.Y. & Latella, B.A. Mapping the structure, composition and mechanical properties of bamboo. Journal of Materials Research 21, 1969–1976 (2006). https://doi.org/10.1557/jmr.2006.0238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0238

Navigation