Skip to main content
Log in

Investigation of the viscoelasticity of human osteosarcoma cells using a shear assay method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents a shear assay method for the determination of the viscoelastic properties of biological cells. The method was applied to the measurement of the viscoelastic properties of human osteosarcoma (HOS) cells. It involves a combination of shear assay experiments and digital image correlation techniques. Following in situ observations of cell deformation during shear assay experiments, a digital image correlation (DIC) technique was used to determine the local displacement and strain fields. The creep curves were also extracted from multiple digital images that were used to extract the time dependence of local strain under constant stress conditions. The measured creep curves were well described by a generalized viscoelastic Maxwell model. The extracted elastic and viscous parameters were in good agreement with results obtained from prior studies with other techniques. The results also suggested that the nucleus is stiffer than the surrounding cytoplasm of HOS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kapur, D.J. Baylink, K.H.W Lau: Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32, 241 (2003).

    Article  CAS  Google Scholar 

  2. E.A. Nauman, R.L. Satcher, T.M. Keaveny, B.P. Halloran, D.D. Bikle: Osteoblasts respond to pulsatile fluid flow with short-term increase in PGE2 but no change in mineralization. J. Appl. Physiol. 90, 1849 (2001).

    Article  CAS  Google Scholar 

  3. V.I. Sikavitsas, J.S. Temeno, A.G. Mikos: Biomaterials and bone mechanotransduction. Biomaterials 22, 2581 (2001).

    Article  CAS  Google Scholar 

  4. J.G. McGarry, J. Klein-Nulend, M.G. Mullender, P.J. Prendergast: A comparison of strain and fluid shear stress in stimulating bone cell responses—A computational and experimental study. FASEB J. 18, 1 (2004).

    Google Scholar 

  5. U. Liegibel, U. Sommer, B. Bundschuh, B. Schweizer, U. Hischer, A. Lieder, P. Nawroth, C. Kasperk: Fluid shear of low magnitude increases growth and expression of TGF beta 1 and adhesion molecules in human bone cells in vitro. Exp. Clin. Endocrinol. Diabetes 112, 356 (2004).

    Article  CAS  Google Scholar 

  6. R. Suwanarusk, B. Cooke, A. Dondorp, K. Silamut, J. Sattabongkot, N. White, R. Udomsangpetch: The deformability of red blood cells parasitized by Plasmodium falciparum and P-vivax. J. Infect. Dis. 189, 190 (2004).

    Article  Google Scholar 

  7. T. Vankooten, J. Schakenraad, H. Vandermei, H. Busscher: Development and use of a parallel plate flow chamber for studying cellular adhesion to solid-surfaces. J. Biomed. Mater. Res. 26, 725 (1992).

    CAS  Google Scholar 

  8. B. Cooke, S. Usami, I. Perry, G. Nash: A simplified method for culture of endothelial-cells and analysis of adhesion of blood-cells under conditions of flow. Microvasc. Res. 45, 33 (1993).

    CAS  Google Scholar 

  9. Y. Wan, J. Yang, J. Yang, J. Bei, S. Wang: Cell adhesion on gaseous plasma modified poly-(L-lactide) surface under shear stress field. Biomaterials 24, 3757 (2003).

    CAS  Google Scholar 

  10. G. Bao, S. Suresh: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).

    Article  CAS  Google Scholar 

  11. C. Zhu, G. Bao, N. Wang: Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189 (2000).

    Article  CAS  Google Scholar 

  12. A. Bausch, F. Ziemann, A. Boulbitch, K. Jacobson, E. Sackmann: Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75, 2038 (1998).

    Article  CAS  Google Scholar 

  13. F. Guilak, J. Tedrow, R. Burgkart: Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781 (2000).

    Article  CAS  Google Scholar 

  14. H. Wu, T. Kuhn, V. Moy: Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20, 389 (1998).

    Article  CAS  Google Scholar 

  15. S. Yamada, D. Wirtz, S. Kuo: Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736 (2000).

    Article  CAS  Google Scholar 

  16. A. Bausch, W. Moller, E. Sackmann: Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573 (1999).

    Article  CAS  Google Scholar 

  17. C. Lo, J. Ferrier: Electrically measuring viscoelastic parameters of adherent cell layers under controlled magnetic forces. Eur. Biophys. J. 28, 112 (1999).

    Article  CAS  Google Scholar 

  18. K. Van-Vliet, G. Bao, S. Suresh: The biomechanics toolbox: Experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881 (2003).

    Article  CAS  Google Scholar 

  19. H. Shiga, Y. Yamane, E. Ito, K. Abe, K. Kawabata, H. Haga: Mechanical properties of membrane surface of cultured astrocyte revealed by atomic force microscopy. Jpn. J. Appl. Phys. 39, 3711 (2000).

    Article  CAS  Google Scholar 

  20. N. Caille, O. Thoumine, Y. Tardy, J. Meister: Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177 (2002).

    Google Scholar 

  21. H. Huang, R.D. Kamm, R.T. Lee: Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1 (2004).

    CAS  Google Scholar 

  22. R. Bly, Y. Cao, W. Moore, W. Soboyejo: Investigation of the effects of alkane phosphonic acid/RGD coatings on cell spreading and the interfacial strength between human osteosarcoma cells and Ti-6Al-4V. Mater. Sci. Eng., C (2006, in press).

    Google Scholar 

  23. Y. Wang, A.M. Cuitino: Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int. J. of Solids Struct. 39, 3777 (2002).

    Google Scholar 

  24. C. Baker: Methylcellulose & sodium carboxymethylcellulose: Uses in paper conservation. Book Paper Group Ann. 1, 4 (1982).

    Google Scholar 

  25. T.C. Chu, W.F. Ranson, M.A. Sutton, W.H. Peters: Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25, 232 (1985).

    Google Scholar 

  26. H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters: Digital image correlation using newton-raphson method of partial differential correction. Exp. Mech. 29, 261 (1989).

    Google Scholar 

  27. G. Vendroux, W.G. Knauss: Submicron: Deformation field measurements: Part 2, Improved digital image correlation. Exp. Mech. 38, 86 (1998).

    Google Scholar 

  28. J. Zhou, Z. Gao, A.M. Cuitino, W.O. Soboyejo: Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Mater. Sci. Eng., A 386, 118 (2004).

    Google Scholar 

  29. B. Matthews, D. Overby, F. Alenghat, J. Karavitis, Y. Numaguchi, P. Allen, D. Ingber: Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313, 758 (2004).

    CAS  Google Scholar 

  30. G. Forgacs, R. Foty, Y. Shafrir, M. Steinberg: Viscoelastic properties of living embryonic tissues: A quantitative study. Biophys. J. 74, 2227 (1998).

    Article  CAS  Google Scholar 

  31. W. Soboyejo: Mechanical Properties of Engineered Materials (Marcel Dekker, New York, 2003).

    Google Scholar 

  32. G. Givelekoglu-Scholey, A.W. Orr, I. Novak, J.J. Meister, M.A. Schwartz, A. Mogilner: Model of coupled transient changes of Rac, Rho, adhesions and stress fibers alignment in endothelial cells responding to shear stress. J. Theor. Biol. 232, 569 (2005).

    Article  CAS  Google Scholar 

  33. E. Decave, D. Rieu, J. Dalous, S. Fache, Y. Brechet, B. Fourcade, M. Satre, F. Bruckert: Shear flow-induced motility of dicytostelium discoideum cells on solid substrate. J. Cell Sci. 116, 4331 (2003).

    Article  CAS  Google Scholar 

  34. C. Dong, R. Skalak, K. Sung: Cytoplasmic rheology of passive neutrophils. Biorheology 28, 557 (1991).

    Article  CAS  Google Scholar 

  35. P.A. Janmey: The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78, 763 (1998).

    Article  CAS  Google Scholar 

  36. N. Caille, Y. Tardy, J. Meister: Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann. Biomed. Eng. 26, 409 (1998).

    Article  CAS  Google Scholar 

  37. H. Haga, S. Sasaki, K. Kawabata, E. Ito, T. Ushiki, T. Sambongi: Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253 (2000).

    Article  CAS  Google Scholar 

  38. N. Kataoka, K. Iwaki, K. Hashimoto, S. Mochizuki, Y. Ogasawara, M. Sato, K. Tsujioka, F. Kajiya: Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proc. Natl. Acad. Sci. USA 99, 15638 (2002).

    Article  CAS  Google Scholar 

  39. D. Brands, G. Peters, P. Bovendeerd: Design and numerical implementation of a 3-D nonlinear viscoelastic constitutive model for brain tissue during impact. J. Biomech. 37, 127 (2004).

    Article  CAS  Google Scholar 

  40. E. Bosboom, M. Hesselink, C.O.C Bouten, M. Drost, F. Baaijens: Passive transverse mechanical properties of skeletal muscle under in vivo compression. J. Biomech. 34, 1365 (2001).

    CAS  Google Scholar 

  41. AFM study shows old cells lose their elasticity. APS (American Physical Society) News, May Issue, 13, 1 (2004).

    Google Scholar 

  42. S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, T. Sefferlein: Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 1, 16 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wole Soboyejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Bly, R., Moore, W. et al. Investigation of the viscoelasticity of human osteosarcoma cells using a shear assay method. Journal of Materials Research 21, 1922–1930 (2006). https://doi.org/10.1557/jmr.2006.0235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0235

Navigation