Skip to main content
Log in

Rate- and depth-dependent nanomechanical behavior of individual living Chinese hamster ovary cells probed by atomic force microscopy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A single elastic modulus is not sufficient for describing the mechanical behavior of a living cell due to its viscoelastic nature and heterogeneity beneath the membrane. In this paper, the nanoscale elastic and viscoelastic behavior of individual living Chinese hamster ovary (CHO-K1) cells in a physiological environment were probed by atomic force microscopy (AFM) indentations at various loading rates. Based on Hertzian fits of the force–distance curves, the apparent elastic modulus of the cells was determined and found to be a function of the loading rate as well as the indentation depth. Notably, contributions from the substrate were negligible up to 50% of the cell thickness. For increased indentation rates and depths, healthy spindle-shaped CHO-K1 cells were found to exhibit an increased change of stiffness, whereas for unhealthy oval- shaped CHO-K1 cells there was little stiffening at equivalent loading rates and depths. Furthermore, a larger hysteresis between the loading and unloading curves was observed with increasing loading rates, which was related to the viscoelastic behavior of CHO-K1 cells. This work demonstrates differences in the rate- and depth-dependent elastic behavior at the nanoscale level between healthy and unhealthy mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Radmacher, R.W. Tillmann, M. Fritz, H.E. Gaub: From molecules to cells: Imaging soft samples with the atomic force microscope. Science 257, 1900 (1992).

    Article  CAS  Google Scholar 

  2. H. Huang, R. Kamm, R. Lee: Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am. J. Physiol. 287, 1 (2004).

    Article  Google Scholar 

  3. G. Bao, S. Suresh: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).

    CAS  Google Scholar 

  4. G. Charras, M. Horton: Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82, 2970 (2002).

    CAS  Google Scholar 

  5. A. Ikai, R. Afrin: Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope: An invited review. Cell Biochem. Biophys. 39, 257 (2003).

    CAS  Google Scholar 

  6. K. Vliet, G. Bao, S. Suresh: The biomechanics toolbox: Experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881 (2003).

    Google Scholar 

  7. C. Zhu, G. Bao, N. Wang: Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Ann. Rev. Biomed. Eng. 2, 189 (2000).

    CAS  Google Scholar 

  8. S. Kasas, X. Wang, H. Hirling, R. Marsault, B. Huni, A. Yersin, R. Regazzi, G. Grenningloh, B. Riederer: Superfical and deep changes of celluar mechanical properties following cytoskeleton disassembly. Cell Motil. Cytoskeleton 62, 124 (2005).

    CAS  Google Scholar 

  9. F. Braet, C. Rotsch, E. Wisse, M. Radmacher: Comparison of fixed and living liver endothelial cells by atomic force microscopy. Appl. Phys. A 66, S (1998).

    Google Scholar 

  10. E. Takai, K. Costa, A. Shaheen, C. Hung, X. Guo: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33, 963 (2005).

    Article  Google Scholar 

  11. C. Rotsch, K. Jacobson, M. Radmacher: Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 921 (1999).

    Article  CAS  Google Scholar 

  12. H. Haga, S. Sasaki, K. Kawabata, E. Ito, T. Ushiki, T. Sambongi: Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253 (2000).

    Article  CAS  Google Scholar 

  13. A. Mathur, G. Truskey, W. Reichert: Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78, 1725 (2000).

    Article  CAS  Google Scholar 

  14. R. Matzke, K. Jacobson, M. Radmacher: Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3, 607 (2001).

    Article  CAS  Google Scholar 

  15. P. Haydon, R. Lartius, V. Parpura, S. Marchese-Ragona: Membrane deformation of living glial cells using atomic force microscopy. J. Microsc. 182, 114 (1996).

    Article  CAS  Google Scholar 

  16. I. Lee, R. Marchant: Force measurements on platelet surfaces with high spatial resolution under physiological conditions. Colloids Surf. B Biointerfaces 19, 357 (2000).

    Article  CAS  Google Scholar 

  17. C. Rotsch, M. Radmacher: Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78, 520 (2000).

    Article  CAS  Google Scholar 

  18. M. McElfresh, E. Baesu, R. Balhorn, J. Belak, M.J. Allen, R.E. Rudd: Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells. Proc. Natl. Acad. Sci. USA 99, 6493 (2002).

    Article  CAS  Google Scholar 

  19. J. Hutter, J. Chen, W.K. Wan, S. Uniyal, M. Leabu, B.M.C Chan: Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation. J. Microsc. 219, 61 (2005).

    Article  CAS  Google Scholar 

  20. A. Pelling, Y. Li, W. Shi, J. Gimzewski: Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc. Natl. Acad. Sci. USA 102, 6484 (2005).

    CAS  Google Scholar 

  21. E. A-Hassan, W.F. Heinz, M.D. Antonik, N.P. D’Costa, S. Nageswaran, C.A. Schoenberger, J.H. Hoh: Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564 (1998).

    CAS  Google Scholar 

  22. S. Sen, S. Subramanian, D. Discher: Indentation and adhesive probing a cell membrane with AFM: Theoretical model and experiments. Biophys. J. 89, 3203 (2005).

    CAS  Google Scholar 

  23. K.S. Tai, H.J. Qi, C. Ortiz: Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J. Mater. Sci.: Mater. Med. 16, 947 (2005).

    CAS  Google Scholar 

  24. A. Hategan, R. Law, S. Kahn, D. Discher: Adhesively tensed cell membranes: Lysis kinetics and atomic force microscopy probing. Biophys. J. 85, 2746 (2003).

    CAS  Google Scholar 

  25. S. Heidemann, D. Wirtz: Towards a regional approach to cell mechanics. Trends Cell Biol. 14, 160 (2004).

    CAS  Google Scholar 

  26. H. Wu, V. Moy: Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20, 389 (1998).

    CAS  Google Scholar 

  27. M. Beil, A. Micoulet, G.V. Wichert, S. Paschke, P. Walther, M.B. Omary, P.P.V Veldhoven, U. Gern, E. Wolf-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, T. Seufferlein: Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803 (2003).

    CAS  Google Scholar 

  28. S. Yamada, D. Wirtz, S.C. Kuo: Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736 (2000).

    CAS  Google Scholar 

  29. A. Mathur, A. Collinsworth, W. Reichert, W. Kraus, G. Truskey: Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545 (2001).

    CAS  Google Scholar 

  30. F. Rico, P. Roca-Cusachs, N. Gavara, R. Farre, M. Rotger, D. Navajas: Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E 72, 021914 (2005).

    Article  Google Scholar 

  31. J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, D. Navajas: Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071 (2003).

    Article  CAS  Google Scholar 

  32. T. Tsui, G. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrate. J. Mater. Res. 14, 292 (1999).

    Article  CAS  Google Scholar 

  33. J. Domke, M. Radmacher: Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320 (1998).

    Article  CAS  Google Scholar 

  34. T. Berdyyeva, C. Woodworth, I. Sokolov: Human epithelial cells increase their rigidity with ageing in vitro: Direct measurements. Phys. Med. Biol. 50, 81 (2005).

    Article  Google Scholar 

  35. K. Costa: Single-cell elastography: Probing for disease with the atomic force microscope. Dis. Markers 19, 139 (2003).

    Article  Google Scholar 

  36. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein: Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 1, 15 (2005).

    Article  CAS  Google Scholar 

  37. E. Stoffels, I. Kieft, R. Sladek: Superfical treatment of mammalian cells using plasma needle. J. Phys. D: Appl. Phys. 36, 2908 (2003).

    Article  CAS  Google Scholar 

  38. K. Costa, F. Yin: Analysis of indentation: Implications for measuring mechical properties with atomic force microscopy. J. Biomech, Eng. Trans. ASME 121, 462 (1999).

    Article  CAS  Google Scholar 

  39. E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R. Chadwick: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Huey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., Srinivasan, C., Burgess, D.J. et al. Rate- and depth-dependent nanomechanical behavior of individual living Chinese hamster ovary cells probed by atomic force microscopy. Journal of Materials Research 21, 1906–1912 (2006). https://doi.org/10.1557/jmr.2006.0233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0233

Navigation