Skip to main content
Log in

Piezoelectric and dielectric tunabilities of ultra-thin ferroelectric heterostructures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The scaling of the piezoelectric and dielectric constants with film thickness in ultra-thin ferroelectric heterostructures is investigated. Epitaxial (001) PbZr0.2Ti0.8O3 films ranging in thickness from 5 nm to 30 nm with top and bottom SrRuO3 electrodes were grown onto (001) SrTiO3 substrates via pulsed laser deposition. Piezoelectric and dielectric measurements were performed using an atomic force microscope. The remnant value of the out of plane piezoresponse (d33) decreases from 60 pm/V for the 30 nm film to just 7 pm/V for the 5 nm film. This systematic decline in d33 is accompanied by a corresponding increase in the coercive field. The d33 loops show a systematic increase in tilt towards the applied field axis as function of reducing thickness coupled with a decrease in piezoelectric tunability. The small-signal relative dielectric response in the direction normal to the film-substrate interface decreases from 140 for a 50 nm film to just 60 for a 8 nm film. A similar drop is also observed in the dielectric tunability, from ∼17% to approximately −2% at an electric field of 750 kV/cm with the film thickness decreasing from 50 nm to 8 nm. We show that these observations cannot be explained using a straightforward application of a modified Landau-Devonshire thermodynamic model that incorporates the internal stresses due to the lattice and thermal expansion mismatch between the film and the substrate. We attribute this behavior to degradation in the polarization due to an intrinsic finite size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Ahn, K.M. Rabe, J.M. Triscone: Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303, 488 (2004).

    Article  CAS  Google Scholar 

  2. E.K. Akdogan, A. Safari: Phenomenological theory of size effects on the cubic-tetragonal phase transition in BaTiO3 nanocrystals. Jpn. J. Appl. Phys. 41, 7170 (2002).

    Article  CAS  Google Scholar 

  3. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson: Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).

    Article  CAS  Google Scholar 

  4. C. Lichtensteiger, J.M. Triscone, J. Junquera, P. Ghosez: Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94, 047603 (2005).

    Article  CAS  Google Scholar 

  5. E.K. Akdogan, C.J. Rawn, W.D. Porter, E.A. Payzant, A. Safari: Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains. J. Appl. Phys. 97, 084305 (2005).

    Article  CAS  Google Scholar 

  6. A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A.V. Sorokin, S.G. Yudin, A. Zlatkin: Two-dimensional ferroelectric films. Nature 391, 874 (1998).

    Article  CAS  Google Scholar 

  7. Y.S. Kim, D.H. Kim, J.D. Kim, Y.J. Chang, T.W. Noh, J.H. Kong, K. Char, Y.D. Park, S.D. Bu, J.G. Yoon, J.S. Chung: Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl. Phys. Lett. 86, 102907 (2005).

    Article  CAS  Google Scholar 

  8. N. Yanase, K. Abe, N. Fukushima, T. Kawakubo: Thickness dependence of ferroelectricity in heteroepitaxial BaTiO3 thin film capacitors. Jpn. J. Appl. Phys. 38, 5305 (1999).

    Article  CAS  Google Scholar 

  9. H. Fujisawa, M. Shimizu, H. Niu, H. Nonomura, K. Honda: Ferroelectricity and local currents in epitaxial 5- and 9-nm-thick Pb(Zr,Ti)O3 ultrathin films by scanning-probe microscopy. Appl. Phys. Lett. 86, 012903 (2005).

    Article  CAS  Google Scholar 

  10. T. Tybell, C.H. Ahn, J.M. Triscone: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (2005).

    Article  Google Scholar 

  11. W.L. Zhong, B.D. Qu, P.L. Zhang, Y.G. Wang: Thickness dependence of the dielectric susceptibility of ferroelectric thin films. Phys. Rev. B 50, 12375 (1994).

    Article  CAS  Google Scholar 

  12. P. Ghosez, K.M. Rabe: Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett. 76, 2767 (2000).

    Article  CAS  Google Scholar 

  13. M.D. Glinchuk, E.A. Eliseev, V.A. Stephanovich: The depolarization field effect on the thin ferroelectric films properties. Physica B (Amsterdam) 322, 356 (2002).

    Article  CAS  Google Scholar 

  14. A.G. Zembilgotov, N.A. Pertsev, H. Kohlstedt, R. Waser: Ultrathin epitaxial ferroelectric films grown on compressive substrates: Competition between the surface and strain effects. J. Appl. Phys. 91, 2247 (2002).

    Article  CAS  Google Scholar 

  15. J. Junquera, P. Ghosez: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).

    Article  CAS  Google Scholar 

  16. M.G. Stachiotti: Ferroelectricity in BaTiO3 nanoscopic structures. Appl. Phys. Lett. 84, 251 (2004).

    Article  CAS  Google Scholar 

  17. M.Y. Zhuravlev, R.F. Sabirianov, S.S. Jaswal, E.Y. Tsymbal: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  CAS  Google Scholar 

  18. A.V. Bune, S. Ducharme, V.M. Fridkin, L. Binov, S.P. Palto, N. Petukhova, S.G. Yudin: Novel switching phenomena in ferroelectric Langmuir-Blodgett films. Appl. Phys. Lett. 67, 3975 (1995).

    Article  CAS  Google Scholar 

  19. J.R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, N.A. Pertsev: Resistive switching in metal-ferroelectric-metal junctions. Appl. Phys. Lett. 83, 4595 (2003).

    Article  CAS  Google Scholar 

  20. H. Qu, W. Yao, T. Garcia, J. Zhang, A.V. Sorokin, S. Ducharme, P.A. Dowben, V.M. Fridkin: Nanoscale polarization manipulation and conductance switching in ultrathin films of a ferroelectric copolymer. Appl. Phys. Lett. 82, 4322 (2003).

    Article  CAS  Google Scholar 

  21. C. Basceri, S.K. Streiffer, A.I. Kingon, R. Waser: The dielectric response as a function of temperature and film thickness of fiber-textured (Ba,Sr)TiO3 thin films grown by chemical vapor deposition. J. Appl. Phys. 82, 2497 (1997).

    Article  CAS  Google Scholar 

  22. Z.G. Ban, S.P. Alpay: Phase diagrams and dielectric response of epitaxial barium strontium titanate films: A theoretical analysis. J. Appl. Phys. 91, 9288 (2002).

    Article  CAS  Google Scholar 

  23. S.P. Alpay, I.B. Misirlioglu, V. Nagarajan, R. Ramesh: Can interface dislocations degrade ferroelectric properties? Appl. Phys. Lett. 85, 2044 (2004).

    Article  CAS  Google Scholar 

  24. V. Nagarajan, S. Prasertchoung, T. Zhao, H. Zheng, J. Ouyang, R. Ramesh, W. Tian, X.Q. Pan, D.M. Kim, C.B. Eom, H. Kohlstedt, R. Waser: Size effects in ultrathin epitaxial ferroelectric heterostructures. Appl. Phys. Lett. 84, 5225 (2004).

    Article  CAS  Google Scholar 

  25. J.A. Christman, R.R. Woolcott Jr., A.I. Kingon, R.J. Nemanich: Piezoelectric measurements with atomic force microscopy. Appl. Phys. Lett. 73, 3851 (1998).

    Article  CAS  Google Scholar 

  26. V. Nagarajan, A. Stanishevsky, L. Chen, T. Zhao, B.T. Liu, J. Melngailis, A.L. Roytburd, R. Ramesh, J. Finder, Z. Yu, R. Droopad, K. Eisenbeiser: Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si. Appl. Phys. Lett. 81, 4215 (2002).

    Article  CAS  Google Scholar 

  27. R. Shao, S.V. Kalinin, D.A. Bonnell: Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl. Phys. Lett. 82, 1869 (2003).

    Article  CAS  Google Scholar 

  28. M. Dawber, P. Chandra, P.B. Littlewood, J.F. Scott: Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys. Condens. Matter. 15, L393 (2003).

    Article  CAS  Google Scholar 

  29. L. Chen, V. Nagarajan, R. Ramesh, A.L. Roytburd: Nonlinear electric field dependence of piezoresponse in epitaxial ferroelectric lead zirconate titanate thin films. J. Appl. Phys. 94, 5147 (2003).

    Article  CAS  Google Scholar 

  30. O.G. Vendik, E.K. Hollmann, A.B. Kozyrev, A.M. Prudan: Ferroelectric tuning of planar and bulk microwave devices. Journal of Superconductivity 12, 325 (1999).

    Article  CAS  Google Scholar 

  31. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatech, N. Setter: Ferroelectric Materials for Microwave Tunable Applications. J. Electroceram. 11, 5 (2003).

    Article  CAS  Google Scholar 

  32. Z.G. Ban, S.P. Alpay: Optimization of the tunability of barium strontium titanate films via epitaxial stresses. J. Appl. Phys. 93, 504 (2003).

    Article  CAS  Google Scholar 

  33. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev: Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988 (1998).

    Article  CAS  Google Scholar 

  34. K.H. Hellwege, A.M. Hellwege: Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology Vol. 16 (Springler, Berlin, 1981).

  35. J.S. Speck, W. Pompe: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films.1. Theory. J. Appl. Phys. 76, 466 (1994).

    Article  CAS  Google Scholar 

  36. S.P. Alpay, A.L. Roytburd: Thermodynamics of polydomain heterostructures. III. Domain stability map. J. Appl. Phys. 83, 4714 (1998).

    Article  CAS  Google Scholar 

  37. Thermodynamic, elastic, and electrostrictive parameters: TC = 459.1 °C, C = 1.642 × 105 °C, b = 3.05 × 107 m5/C2F, c = 2.475 × 108 m9/C4F, Q12 = -2.446 × 10-2 m4/C2, S = 6 × 10-12 m2/N, ? = 1.3.

  38. J.W. Matthews, A.E. Blakeslee: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  39. S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, A.I. Kingon: Ferroelectricity in thin films: The dielectric response of fiber-textured (BaxSr1-x)Ti1+yO3+z thin films grown by chemical vapor deposition. J. Appl. Phys. 86, 4565 (1999).

    Article  CAS  Google Scholar 

  40. A.K. Tagantsev, M. Landivar, E. Colla, N. Setter: Identification of passive layer in ferroelectric thin films from their switching parameters. J. Appl. Phys. 78, 2623 (1995).

    Article  CAS  Google Scholar 

  41. R. Kretschmer, K. Binder: Surface effects on phase transitions in ferroelectrics and dipole magnets. Phys. Rev. B 20, 1065 (1979).

    Article  CAS  Google Scholar 

  42. D.R. Tilley, B. Zeks: Landau theory of phase transitions in thick films. Solid State Commun. 49, 823 (1984).

    Article  Google Scholar 

  43. W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu: Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698 (1994).

    Article  CAS  Google Scholar 

  44. B. Jiang, L.A. Bursill: Phenomenological theory of size effects in ultrafine ferroelectric particles of lead titanate. Phys. Rev. B 60, 9978 (1999).

    Article  CAS  Google Scholar 

  45. J. Zhang, Z. Yin, M.S. Zhang, J.F. Scott: Size-driven phase transition in stress-induced ferroelectric thin films. Solid State Commun. 118, 241 (2001).

    Article  CAS  Google Scholar 

  46. Z.G. Ban, S.P. Alpay, J.V. Mantese: Fundamentals of graded ferroic materials and devices. Phys. Rev. B 67, 184104 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Alpay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, S., Alpay, S.P. & Nagarajan, V. Piezoelectric and dielectric tunabilities of ultra-thin ferroelectric heterostructures. Journal of Materials Research 21, 1600–1606 (2006). https://doi.org/10.1557/jmr.2006.0193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0193

Navigation