Skip to main content

Advertisement

Log in

Nanoscale characterization of nautilus shell structure: An example of natural self-assembly

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Structural characterization at the nanometric scale of the Nautilus sp shell was carried out by high-resolution transmission electron microscopy and high-angle annular dark field to understand how the organic and inorganic components are related. The inorganic phase that built the shell is made of calcium carbonate (CaCO3), with the orthorhombic unit cell of the aragonite, in a texturized arrangement in such a way that the c-axis is always perpendicular to the shell surface. The organic material forms films through the plates. We observed for a very first time some aragonite nanocrystals embedded in the organic matrix. This observation supports the hypothesis that the proteins and other organic compounds guide the crystal growth because the organic matrixes are the places where the nanocrystals grow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, Y. Xu, Y. Zhao, Y. Huang, D. Wang, L. Jiang, J. Wu, D. Xu: Morphology and crystalline characterization of abalone shell and mimetic mineralization. J. Cryst. Growth 252, 367 (2003).

    Article  CAS  Google Scholar 

  2. A. Lin, M. Andre: Growth and structure in abalone shell. Mater. Sci. Eng. A 390, 27 (2005).

    Article  Google Scholar 

  3. H. Tsuno, H. Kagi, T. Akagi: Effects of trace lanthanum ion on the stability of vaterite and transformation from vaterite to calcite in an aquatic system. Bull. Chem. Soc. Jpn. 74, 479 (2001).

    Article  CAS  Google Scholar 

  4. C.M. Zaremba, A.M. Belcher, M. Fritz, Y. Li, S. Mann, P.K. Hansma, D.E. Morse, J.S. Speck, G.D. Stucky: Critical transitions in the biofabrication of abalone shell and flat pearls. Chem. Mater. 8, 679 (1996).

    Article  CAS  Google Scholar 

  5. K. Wada: Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biomineralization 6, 141 (1972).

    CAS  Google Scholar 

  6. S.W. Wise: Microarchitecture and mode of formation of nacre (mother of pearl) in Pelecypods. Gastropods Cephalopods Eclogae Geol Helv. 63, 775 (1970).

    Google Scholar 

  7. M. Rousseau, E. Lopez, P. Stempflé, M. Brendlé, L. Franke, A. Guette, R. Naslai, X. Bourrat: Multiscale structure of sheet nacre. Biomaterials 26, 6254 (2005).

    Article  CAS  Google Scholar 

  8. A.G. Checa, Rodriguez-A.B. Navarro: Self organization of nacre in the shell of Pterioida (Bivalvia: Mollusca). Biomaterials 26, 1071 (2005).

    Article  CAS  Google Scholar 

  9. L. Addadi, S. Weiner: Biomineralization: Chemical and Biochemical Perspectives (VCH, New York, 1989).

    Google Scholar 

  10. E.M. Greenfield, M.A. Chrenshaw: Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals (Plenum Press, New York, 1989) pp. 303–308.

    Google Scholar 

  11. M. Fritz, A.M. Belcher, M. Radmacher, D.A. Walters, P.K. Hansma, G.D. Stucky, D.E. Morse, S. Mann: Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 371, 49 (1994).

    Article  CAS  Google Scholar 

  12. A.M. Belcher, X.H. Wu, R.J. Christensen, P.K. Hansma, G.D. Stucky, D.E. Morse: Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56 (1996).

    Article  CAS  Google Scholar 

  13. L. Addadi, S. Weiner: A pavement of pearl. Nature 389, 912 (1997).

    Article  CAS  Google Scholar 

  14. D.J. Bevan, E. Rossmanith, D.K. Mylrea, S.E. Ness, M.R. Tylor, C. Cuff: On the structure of aragonite: Lawrence Bragg revisited. Acta Cryst. B 58, 448 (2002).

    Article  CAS  Google Scholar 

  15. F. Song, X.H. Zhang, Y.L. Bai: Microstructure and characterization in the organic matrix layers of nacre. J. Mater. Res. 17, 1567 (2002).

    Article  CAS  Google Scholar 

  16. Z. Zhu, H. Tong, Y. Ren, J. Hu: Meretrix lusoria: A natural biocomposite: In situ analysis of hierarchical fabrication and micro-hardness. J. Mater. Res. 37, 35 (2006).

    CAS  Google Scholar 

  17. J. Aizenberg, S. Albeck, S. Weiner, L. Addadi: Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements. J. Cryst. Growth 142, 156 (1994).

    Article  CAS  Google Scholar 

  18. K. Gunnison, M. Sarikaya, J. Liu, and I.A. Aksay: Structure-mechanical property relationships in a biological ceramic-polymer composite: Nacre, in Hierarchically Structured Materials edited by I.A. Aksay, E. Baer, M. Sarikaya, and D.A. Tirrell (Mater. Res. Soc. Symp. Proc. 255, Pittsburgh, PA, 1992) pp. 171–183.

    Google Scholar 

  19. K.M. Towe, G.H. Hamilton: Ultrastructure and inferred calcification of the mature and developing nacre in bivalve mollusk. Calcif. Tissue Res. 1, 306 (1968).

    Article  CAS  Google Scholar 

  20. L. Wang, R. Tang, T. Bonstein, C.A. Orme, P.J. Bush, G.H. Nancollas: A new model for nanoscale enamel dissolution. J. Phys. Chem. B 109, 999 (2005).

    Article  CAS  Google Scholar 

  21. C. Liu, R.D. Twesten, M. Gibson: High-angle annular dark-field imaging of self-assembled Ge islands on Si (001). Ultramicroscopy 87, 79 (2001).

    Article  CAS  Google Scholar 

  22. A. Howie, L.D. Marks, S.J. Pennycook: New imaging methods for catalyst particles. Ultramicroscopy 8, 163 (1992).

    Article  Google Scholar 

  23. N.D. Browning, D.J. Wallis, P.D. Nellist, S.J. Pennycook: EELS in the STEM: Determination of materials properties on the atomic scale. Micron 28, 333 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Velázquez-Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez-Castillo, R., Reyes-Gasga, J., García-Gutierrez, D.I. et al. Nanoscale characterization of nautilus shell structure: An example of natural self-assembly. Journal of Materials Research 21, 1484–1489 (2006). https://doi.org/10.1557/jmr.2006.0190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0190

Navigation