Skip to main content
Log in

Observation of linear defects in Al particles below 7 nm in size

  • Rapid Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An as-solidified structure of an Al-based ribbon sample produced by the melt-spinning technique was studied by x-ray diffractometry and transmission electron microscopy. The addition of Pd to Al-Y-Ni-Co alloys caused formation of the highly dispersed primary α-Al nanoparticles about 3–5 nm in size homogeneously embedded in the glassy matrix upon solidification. The first direct observation of microstrain and dislocations quenched in nanoparticles with a size below 7 nm is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, K. Ohtera, A.P. Tsai, T. Masumoto: New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27L736 (1988).

    Article  CAS  Google Scholar 

  2. A. Inoue, K. Ohtera, A.P. Tsai, T. Masumoto: New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M=Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys. 27L280 (1988).

    Article  CAS  Google Scholar 

  3. Y. He, S.J. Poon, G.J. Shiflet: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).

    Article  CAS  Google Scholar 

  4. A. Inoue, K. Ohtera, A.P. Tsai, T. Masumoto: Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2). Jpn. J. Appl. Phys. 27, L479 (1988).

    Article  CAS  Google Scholar 

  5. G.J. Shiflet, Y. He, S.J. Poon: Mechanical properties of a new class of metallic glasses based on aluminum. J. Appl. Phys. 64, 6863 (1988).

    Article  CAS  Google Scholar 

  6. A. Inoue, N. Matsumoto, T. Masumoto: Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. Trans. JIM 31, 493 (1990).

    Article  CAS  Google Scholar 

  7. D.V. Louzguine, A. Inoue: Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl. Phys. Lett. 79, 3410 (2001).

    Article  CAS  Google Scholar 

  8. Y.H. Kim, A. Inoue, T. Masumoto: Ultrahigh mechanical strengths of Al88Y2Ni10-xMx (M=Mn, Fe or Co) amorphous alloys containing nanoscale fcc-Al particles. Mater. Trans. JIM 32, 599 (1991).

    Article  CAS  Google Scholar 

  9. K. Hono, Y. Zhang, A.P. Tsai, A. Inoue, T. Sakurai: Solute partitioning in partially crystallized Al-Ni-Ce(-Cu) metallic glasses. Script. Mater. 32, 191 (1995).

    Article  CAS  Google Scholar 

  10. T.B. Massalski: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  11. A. Inoue: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).

    Article  CAS  Google Scholar 

  12. A.L. Greer: Metallic glasses. Science 267, 1947 (1995).

    Article  CAS  Google Scholar 

  13. J.H. Perepezko, R.J. Hebert, W.S. Tong: Amorphization and nanostructure synthesis in Al alloys. Intermetallics 10, 1079 (2002).

    Article  CAS  Google Scholar 

  14. J.H. Perepezko: Nucleation-controlled reactions and metastable structures. Prog. Mater. Sci. 49, 263 (2004).

    Article  CAS  Google Scholar 

  15. D.V. Louzguine, A. Inoue: Investigation of structure and properties of the Al–Y–Ni–Co–Cu metallic glasses. J. Mater. Res. 17, 1014 (2002).

    Article  CAS  Google Scholar 

  16. D.V. Louzguine, A. Inoue: Strong influence of supercooled liquid on crystallization of the Al85Y4Nd4Ni5Co2 metallic glass. Appl. Phys. Lett. 78, 3061 (2001).

    Article  CAS  Google Scholar 

  17. D.V. Louzguine, A. Inoue: Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature. J. Non-Cryst. Solids 311, 281 (2002).

    Article  CAS  Google Scholar 

  18. F.Q. Guo, S.J. Poon, and G.J. Shiflet: Effect of the supercooled liquid region on Al85Ni7Gd8 metallic glass in crystallization products, in Supercooled Liquids, Glass Transition, and Bulk Metallic Glasses, edited by T. Egami, A.L. Greer, A. Inoue, and S. Ranganathan (Mater. Res. Soc. Proc. 754, Warrendale, PA, 2003) CC11.6, p. 391.

    CAS  Google Scholar 

  19. K. Zhang, I.V. Alexandrov, R.Z. Valiev, K. Lu: Structural characterization of nanocrystalline copper by means of x-ray diffraction. J. Appl. Phys. 88, 5617 (1996).

    Article  Google Scholar 

  20. H. Van Swygenhoven, P.M. Derlet, A. Hasnaoui: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002).

    Article  Google Scholar 

  21. A.L. Greer: Partially or fully devitrified alloys for mechanical properties. Mater. Sci. Eng. A304–306, 68 (2001).

    Article  Google Scholar 

  22. S.S. Gorelik, U.A. Skakov, L.N. Rastorguev: X-Ray and Electron-Optic Analysis (in Russian) (MISIS, Moscow, 1994), p. 328.

    Google Scholar 

  23. D.V. Louzguine, A. Inoue: Devitrification of Ni-based glassy alloys containing noble metals in relation with the supercooled liquid region. J. Non-Cryst. Solids 337, 161 (2004).

    Article  CAS  Google Scholar 

  24. J.Y. Huang, Y.K. Wu, H.Q. Ye: Deformation structures in ball milled copper. Acta Mater. 44, 1211 (1996).

    Article  CAS  Google Scholar 

  25. R.J. Hebert, J.H. Perepezko, H. Rösner, G. Wilde: Dislocation formation during deformation-induced synthesis of nanocrystals in amorphous and partially crystalline amorphous Al88Y7Fe5 alloy. Script. Mater. 54, 25 (2006).

    Article  CAS  Google Scholar 

  26. R. Mitra, W.A. Chiou, J.R. Weertman: In situ study of deformation mechanisms in sputtered free-standing nanocrystalline nickel films. J. Mater. Res. 19, 1029 (2004).

    Article  CAS  Google Scholar 

  27. D.X. Li, D.H. Ping, H.Q. Ye, X.Y. Qin, X.J. Wu: HREM study of the microstructure in nanocrystalline materials. Mater. Lett. 18, 29 (1993).

    Article  CAS  Google Scholar 

  28. A.S. Aronin, G.E. Abrosimova, Y.V. Kir’yanov.: Formation and structure of nanocrystals in an Al86Ni11Yb3 Alloy. Phys. Solid State 43, 2003 (2001).

    Article  CAS  Google Scholar 

  29. Z. Chen, J. Ding: Molecular dynamics studies on dislocations in crystallites of nanocrystalline a-iron. Nanostruct. Mater. 10, 205 (1998).

    Article  CAS  Google Scholar 

  30. V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter: Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 51, 4135 (2003).

    Article  CAS  Google Scholar 

  31. H. Van Swygenhoven, P.M. Derlet: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).

    Article  Google Scholar 

  32. H. Van Swygenhoven: Grain boundaries and dislocations. Science 296, 66 (2002).

    Article  Google Scholar 

  33. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).

    Article  CAS  Google Scholar 

  34. E. Ma: Watching the nanograins roll. Science 305, 623 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Louzguine-Luzgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louzguine-Luzgin, D.V., Inoue, A. Observation of linear defects in Al particles below 7 nm in size. Journal of Materials Research 21, 1347–1350 (2006). https://doi.org/10.1557/jmr.2006.0189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0189

Navigation