Skip to main content
Log in

Key role of milling in the optimization of TiO2 nanoinks

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanostructured films of TiO2 are becoming more and more attractive as a consequence of their improved sensing properties. Screen printing represents an important low-cost alternative for the production of high-performance devices for the automotive industry. However, to obtain films with superior properties, the composition and each step of the ink production must be carefully controlled. Milling strongly influences the rheological properties of the ink and, as a consequence, the quality of the deposited film. The as-prepared ink was homogenized in a four steps-process with a three-roll mill, and the rheological properties at each intermediate stage were measured. The results showed the dramatic effect of the milling on the flow properties of the nanoink and suggested the importance of a careful control of this step. The rheological behavior of the inks was explained using the basic idea of the transient network theory (TNT) for physically cross-linked networks of polymer solutions. Only an optimized cycle of milling can assure the necessary reproducibility of the ink properties as well as their time stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kosacki, U.H. Anderson: Nanostructured oxide thin films for gas sensors. Sens. Actuators B 48, 263 (1998).

    Article  CAS  Google Scholar 

  2. A.M. Taurino, M. Epifani, T. Toccoli, S. Iannotta, P. Siciliano: Innovative aspects in thin film technologies for nanostructured materials in gas sensors devices. Thin Solid Films 463, 52 (2003).

    Article  Google Scholar 

  3. U. Kiner, K.D. Schierbaum, W. Gopel: Low and high temperature TiO2 oxygen sensors. Sens. Actuators B 1, 103 (1990).

    Article  Google Scholar 

  4. M.C. Carotta, M. Ferrosi, V. Giudi, G. Martinelli: Preparation and characterization of nanostructured titania thick films. Adv. Mater. 11, 943 (1999).

    Article  CAS  Google Scholar 

  5. N.M. White, J.D. Turner: Thick-film sensors: past, present and future. Meas. Sci. Technol. 8, 1 (1997).

    Article  CAS  Google Scholar 

  6. R.E. Trease, R.L. Dietz: Rheology of pastes in thick-film printing. Solid State Technol. 38(1972).

  7. N. Camina, C.G. Roffey: Statistical interpretation of viscoelasticity. Rheol. Acta 10, 606 (1971).

    Article  Google Scholar 

  8. A. Zupancic, R. Lapasin, M. Zumer: Rheological characterisation of shear-thickening TiO2 suspensions in low molecular polymer solution. Prog. Org. Coat. 30, 67 (1997).

    Article  CAS  Google Scholar 

  9. R.L. Hoffman: Discontinuous and dilatant viscosity behavior in concentrated suspensions. I: Observation of a flow instability. Trans. Soc. Rheol. 16, 155 (1972).

    Article  CAS  Google Scholar 

  10. R.L. Hoffman: Discontinuous and dilatant viscosity behavior in concentrated suspensions. II: Theory and experimental tests. J. Colloid Interface Sci. 46, 491 (1974).

    Article  CAS  Google Scholar 

  11. H.A. Barnes: Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33, 329 (1989).

    Article  CAS  Google Scholar 

  12. S.T. Vittadello, S. Biggs: Shear history effects in associative thickener solutions. Macromolecules 31, 7691 (1998).

    Article  CAS  Google Scholar 

  13. E.J. Regalado, J. Selb, F. Landau: Viscoelastic behaviour of semidiluite solutions of multisticker polymer chains. Macromolecules 32, 8580 (1999).

    Article  CAS  Google Scholar 

  14. T.A. Witten, M.H. Cohen: Cross-linking in shear-thickening ionomers. Macromolecules 18, 1915 (1985).

    Article  CAS  Google Scholar 

  15. T. Annable, R. Buscall, R. Ettelaie: Network formation and its consequences for the physical behaviour of associating polymer in solution. Colloid Surf. A 112, 97 (1996).

    Article  CAS  Google Scholar 

  16. K.H. Ahn, K. Osaki: Mechanism of shear thickening investigated by a network model. J. Non-Newtonian Fluid Mech. 56, 267 (1995).

    Article  CAS  Google Scholar 

  17. M.S. Green, A.V. Tobolsky: A new approach of the theory of relaxing polymeric media. J. Chem. Phys. 14, 80 (1946).

    Article  CAS  Google Scholar 

  18. F. Tanaka, S.F. Edwards: Viscoelastic properties of physically cross-linked networks. Transient network theory. Macromolecules 25, 1516 (1992).

    Article  CAS  Google Scholar 

  19. G. Marrucci, S. Bhargava, S.L. Cooper: Models of shear-thickening behavior in physically cross-linked networks. Macromolecules 26, 6483 (1993).

    Article  CAS  Google Scholar 

  20. S.Q. Wang: Transient network theory for shear-thickening fluids and physically cross-linked systems. Macromolecules 25, 7003 (1992).

    Article  CAS  Google Scholar 

  21. X.S. Ma, S.L. Cooper: Shear thickening in aqueous solutions of hydrocarbon end-capped poly(ethylene oxide). Macromolecules 34, 3294 (2001).

    Article  CAS  Google Scholar 

  22. R. Lapasin, S. Pricl: Rheology of Industrial Polysaccharides, Theory and Applications, 1st ed. (Blackie Academic and Professional, Glasgow, UK, 1995).

    Book  Google Scholar 

  23. L.G. Patruyo, A.J. Muller, A.E. Saez: Shear and extensional rheology of solutions of modified hydroxyethyl celluloses and sodium dodecyl sulphate. Polymer 43, 6481 (2002).

    Article  CAS  Google Scholar 

  24. R. Lund, R.A. Lauten, B. Nystrom, B. Lindman: Linear and nonlinear viscoelasticity of semidilute aqueous mixtures of a nonionic cellulose derivative and ionic surfactant. Langmuir 17, 8001 (2001).

    Article  CAS  Google Scholar 

  25. I.S. Chronakis, P. Alexandridis: Rheological properties of oppositely charged polyelectrolyte-surfactant mixtures: Effect of polymer molecular weight and surfactant architecture. Macromolecules 34, 5005 (2001).

    Article  CAS  Google Scholar 

  26. Y. Nakano: Science and technology of polymer gels. J. Chem. Eng. Jap. 38, 605 (2005).

    Article  CAS  Google Scholar 

  27. C.J. Brinker, G.W. Scherer: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing 1st edition (Academic Press Limited, London, UK, 1990).

    Google Scholar 

  28. A.C. Pierre: Introduction to Sol-Gel Processing, 2nd ed. (Kluwer Academic, Norwell, MA, 2002).

    Google Scholar 

  29. G. Tari: Gelcasting ceramics: A review. Am. Ceram. Soc. Bull. 82, 43 (2003).

    CAS  Google Scholar 

  30. J.A. Lewis: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanson, A., Gardini, D., Montanari, G. et al. Key role of milling in the optimization of TiO2 nanoinks. Journal of Materials Research 21, 1561–1569 (2006). https://doi.org/10.1557/jmr.2006.0188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0188

Navigation