Skip to main content
Log in

Fabrication and properties of HfB2–MoSi2 composites produced by hot pressing and spark plasma sintering

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

HfB2–15 vol% MoSi2 composites were produced from powder mixtures and densified through different techniques, namely hot pressing and spark plasma sintering. Dense materials were obtained at 1900 °C by hot pressing and at 1750 °C by spark plasma sintering. Microstructure and mechanical properties were compared. The most relevant result was for high-temperature strength: independent of the processing technique, the flexural strength in air at 1500 °C was higher than 500 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Opeka, I.G. Talmy, J.A. Zaykoski: Oxidation-based materials selection for 2000 °C+ hypersonic aerosurfaces: Theoretical consideration and historical experience. J. Mater. Sci. 39, 5887 (2004).

    Article  CAS  Google Scholar 

  2. K. Upadhya, J.M. Yang, W.P. Hoffmann: Materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull. 58, 51 (1997).

    Google Scholar 

  3. G. Van Goor, P. de Sagesser, K. Berroth Electrically conductive ceramic composites, in Advanced Multilayered and Fibre-Reinforced Composites edited by Y.M. Haddad (Kluwer Academic, The Netherlands, 1998), pp. 311–322.

    Google Scholar 

  4. E.V. Clougherty, D. Kalishi, and E.T. Peters: Research and development of refractory oxidation resistant diborides, Technical Report AFML-TR-68-190 (1968).

    Google Scholar 

  5. M. Gasch, D. Elleby, E.I. Irby, S. Beckam, M. Gusman, S. Johnson: Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. J. Mater. Sci. 39, 5925 (2004).

    Article  CAS  Google Scholar 

  6. M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, S.J. Causey: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).

    Article  CAS  Google Scholar 

  7. E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, Guitierrez-F. Mora: Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx, and Hf(N). J. Mater. Sci. 39, 5939 (2004).

    Article  CAS  Google Scholar 

  8. V. Medri and A. Bellosi: Microstructure and properties of hot pressed hafnium diboride with silicon nitride as sintering aid (unpublished).

  9. F. Monteverde, A. Bellosi: Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics. J. Mater. Res. 19, 3576 (2004).

    Article  CAS  Google Scholar 

  10. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas Characterization of zirconium diboride-molybdenum disilicide ceramics, in Advances in Ceramic Matrix Composites IX Ceram. Trans. Vol. 153, edited by N.P. Bansal, J.P. Singh, W.M. Kriven, and H. Schneider, (Am. Ceram. Soc., Westerville, OH, 2003), p. 299.

    CAS  Google Scholar 

  11. D. Sciti, M. Brach, A. Bellosi: Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. J. Mater. Res. 20, 922 (2005).

    Article  CAS  Google Scholar 

  12. D.G. Munz J.L. Shannon Jr. R.T. Bubsey: Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens. Int. J. Fract. 16, R137 (1980).

    Article  Google Scholar 

  13. M. Nygren, Z. Shen: Novel assemblies via spark plasma sintering. Silic. Indus. 69, 211 (2004).

    CAS  Google Scholar 

  14. V. Mamedov: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45, 322 (2002).

    Article  CAS  Google Scholar 

  15. J.R. Groza, A. Zavaliangons: Sintering activation by electrical field. Mater. Sci. Eng. A 287, 171 (2000).

    Article  Google Scholar 

  16. Y.L. Jeng, E.J. Lavernia: Review: Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557 (1994).

    Article  Google Scholar 

  17. E.M. Levin, C.R. Robbins, H.F. Murdie McPhase diagram for ceramists (Am. Ceram. Soc., Columbus, OH, 1969), 1969 Suppl., p. 98.

    Google Scholar 

  18. F. Monteverde, A. Bellosi: Microstructure and properties of an HfB2-SiC composite for ultra high temperature applications. Adv. Eng. Mater. 6, 331 (2004).

    Article  CAS  Google Scholar 

  19. Y.T. Zhu, M. Stan, S.D. Conzone, D.P. Butt: Thermal oxidation kinetics of MoSi2-based powders. J. Am. Ceram. Soc. 82, 2785 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diletta Sciti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciti, D., Silvestroni, L. & Bellosi, A. Fabrication and properties of HfB2–MoSi2 composites produced by hot pressing and spark plasma sintering. Journal of Materials Research 21, 1460–1466 (2006). https://doi.org/10.1557/jmr.2006.0180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0180

Navigation