Skip to main content
Log in

Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) were grown on micron-sized Al2O3 particles in an atmosphere of methane and hydrogen at 700 °C under the catalysis of Fe-Ni nanoparticles that had been deposited on the surface of Al2O3 particles by an electroless plating technique. The individual and competitive adsorption capacities of Pb2+, Cu2+, and Cd2+ from aqueous solution by CNTs on Al2O3 particles were studied. The results showed that the adsorption behavior of these metal ions by as-grown CNTs on Al2O3 particles is in good agreement with the Langmuir adsorption model. The maximum individual adsorption capacities of Pb2+, Cu2+, and Cd2+ from water by as-grown CNTs on Al2O3 particles are 62.50, 27.03, and 9.30 mg/g, respectively. The CNTs on Al2O3 particles have promising potential applications in removing soluble heavy metals from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.C. Di, Y.H. Li, Z.K. Luan, J. Liang: Adsorption of chromium(VI) ions from water by carbon nanotubes. Adsorption Sci. Technol. 22, 467 (2004).

    Article  CAS  Google Scholar 

  2. Y.H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei: Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41, 2787 (2003).

    Article  CAS  Google Scholar 

  3. Y.H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu: Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057 (2003).

    Article  CAS  Google Scholar 

  4. Y.H. Li, Z.C. Di, Z.K. Luan, J. Ding, H. Zou, X.Q. Wu, C.L. Xu, D.H.J. Wu: Removal of heavy metals from aqueous solution by carbon nanotubes: Adsorption equilibrium and kinetics. Environ. Sci. 16, 208 (2004).

    CAS  Google Scholar 

  5. S. Da, J.R. Antonio, J.C. Faria, E.S. Da Silva, and A. Fazzio: Adsorption of gold atoms on carbon nanotubes. (Nanotechnol. Conf. Trade Show Nanotech 3, Computational Publications, Cambridge, MA, 2003), p. 165.

    Google Scholar 

  6. J. Zhao, A. Buldum, J. Han, and J.P. Lu: Gas molecules adsorption on carbon nanotubes, in Nanotubes and Related Materials, edited by A.M. Rao (Mater. Res. Soc. Symp. Proc. 633, Warrendale, PA, 2001), p. A13.48.

    Google Scholar 

  7. L. Valentitni, I. Amentano, L. Lozzi, S. Santucci, J.M. Kenny: Interaction of methane with carbon nanotube thin films: Role of defects and oxygen adsorption. Mater. Sci. Eng. C 24, 527 (2004).

    Article  CAS  Google Scholar 

  8. Y.H. Li, S. Wang, X. Zhang, J. Wei, C. Xu, Z. Luan, D. Wu: Adsorption of fluoride from water by aligned carbon nanotubes. Mater. Res. Bull. 38, 469 (2003).

    Article  CAS  Google Scholar 

  9. F. Darkrim, D. Levesque: High adsorptive property of opened carbon nanotubes at 77 K. J. Phys. Chem. B 104, 6773 (2000).

    Article  CAS  Google Scholar 

  10. S.M. Lee, K.S. Park, Y.C. Choi, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, Y.H. Lee: Hydrogen adsorption and storage in carbon nanotubes. Synth. Met. 113, 209 (2000).

    Article  CAS  Google Scholar 

  11. A. Netzer, D.E. Hughes: Adsorption of copper, lead and cobalt by activated carbon. Water Res. 18, 927 (1984).

    Article  CAS  Google Scholar 

  12. S. Karabulut, A. Karabakan, A. Denizli, Y. Yurum: Batch removal of copper(II) and zinc(II) from aqueous solutions with low-rank Turkish coals. Separation and Purification Technology 18, 177 (2000).

    Article  CAS  Google Scholar 

  13. P.A. Brown, S.A. Gill, S.J. Allen: Metals removal from wastewaters using peat. Water Res. 34, 3907 (2000).

    Article  CAS  Google Scholar 

  14. M.I. Kandah: Zinc and cadmium adsorption on low-grade phosphate. Separtation and Purification Technology 35, 61 (2004).

    Article  CAS  Google Scholar 

  15. N.R. Axtell, S.P.K. Stemberg, K. Claussen: Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 89, 41 (2003).

    Article  CAS  Google Scholar 

  16. A. Üçer, A. Uyanik, S.F. Aygün: Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilized activated carbon. Sep. Purif. Technol. 47, 113 (2006).

    Article  CAS  Google Scholar 

  17. P. Miretzky, A. Saralegui, A.F. Cirelli: Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62, 247 (2006).

    Article  CAS  Google Scholar 

  18. G. Bereket, A.Z. Aroguz, M.Z. Özel: Removal of Pb(II), Cd(II), Cu(II), and Zn(II) from aqueous solutions by adsorption on bentonite. J. Colloid Sci. 187, 338 (1997).

    Article  CAS  Google Scholar 

  19. J. Shao, Y. Yang, C. Shi: Preparation and adsorption properties for metal ions of chitin modified by L-cysteine. J. Appl. Polym. Sci. 88, 2575 (2003).

    Article  CAS  Google Scholar 

  20. B.L. Rivas, H.A. Maturana, S. Villegas: Adsorption behavior of metal ions by amidoxime chelating resin. J. Appl. Polym. Sci. 77, 1994 (2000).

    Article  CAS  Google Scholar 

  21. S.L. Lo, C.Y. Lin: Adsoption of heavy metals from wastewater with waste activated sludge. Zhongguo Gongchen Xuekan 12, 451 (1989).

    CAS  Google Scholar 

  22. E. Jouad M., F. Jourjon, G. Le Guillanton, D. Elothmani: Removal of metal ions in aqueous solutions by organic polymers: Use of a polydiphenylamine resin. Desalination 180(1–3), 471 (2005).

    Google Scholar 

  23. Z. Reddad, C. Gerente, Y. Andres, Le P. Cloirec: Comparison of the fixation of several metal ions onto a low-cost biopolymer. Water Sci. Technol. 2(5–6), 217 (2002).

    CAS  Google Scholar 

  24. C.K. Tsai A study of adsorption of dissolved heavy metal ions by composite carbon nanotubes. Master Thesis, National Yulin University of Science and Technology, Douliu, Yunlin, Taiwan (2005).

    Google Scholar 

  25. W.A. Arnold, A.L. Roberts: Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environ. Sci. Technol. 32, 3017 (1998).

    Article  CAS  Google Scholar 

  26. J.P. Fennelly, A.L. Roberts: Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ. Sci. Technol. 32, 1980 (1998).

    Article  CAS  Google Scholar 

  27. B. Schrick, J.L. Blough, A.D. Jones, E. Malouk: Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater. 14, 5140 (2002).

    Article  CAS  Google Scholar 

  28. J.M. Leah, G.T. Paul: Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045 (1994).

    Article  Google Scholar 

  29. A.L. Roberts, L.A. Totten, W.A. Arnold, D.R. Burris, T.J. Campbell: Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Tech. 30, 2654 (1996).

    Article  CAS  Google Scholar 

  30. C.B. Wang, W.X. Zhang: Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Tech. 31, 2154 (1997).

    Article  CAS  Google Scholar 

  31. N. Melitas, J. Wang, M. Conklin, O’P. Day, J. Farrell: Understanding soluble arsenate removal kinetics by zerovalent iron media. Environ. Sci. Technol. 36, 2074 (2002).

    Article  CAS  Google Scholar 

  32. L.A. Totten, U. Jans, A.L. Roberts: Alkyl bromides as mechanistic probes of reductive dehalogenation: Reactions of vicinal dibromide stereoisomers with zerovalent metals. Environ. Sci. Technol. 35, 2268 (2001).

    Article  CAS  Google Scholar 

  33. C. Su, R.W. Puls: Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 33, 163 (1999).

    Article  CAS  Google Scholar 

  34. F.X.M. Casey, S.K. Ong, R. Horton: Degradation and transformation of trichloroethylene in miscible-displacement experiments through zerovalent metals. Environ. Sci. Technol. 34, 5023 (2000).

    Article  CAS  Google Scholar 

  35. R.W. Gillham, O’S.F. Hannesin: Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32, 958 (1994).

    Article  CAS  Google Scholar 

  36. W.S. Orth, R.W. Gillham: Dechlorination of trichloroethylene in aqueous solution using Fe0. Environ. Sci. Technol. 30, 66 (1996).

    Article  CAS  Google Scholar 

  37. S.F. O’Hannesin, R.W. Gilliham: Long-term performance of an in situ “iron wall” for remediation of VOCs. Ground Water 36(1), 164 (1998).

    Article  Google Scholar 

  38. D.E. Meyer, K. Wood, L.G. Bachas, D. Bhattacharyya: Degradation of chlorinated organics by membrane-immobilized nanosized metals. Environ. Prog. 23(3), 232 (2004).

    Article  CAS  Google Scholar 

  39. Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263 (2002).

    Article  CAS  Google Scholar 

  40. C.M. Hsu Simulating competitive adsorption onto Al2O3 by triple-layer model. Master Thesis, Yulin University of Science and Technology, Douliu, Yunlin, Taiwan (2003).

    Google Scholar 

  41. N. Chiron, R. Guilet, E. Deydier: Adsorption of Cu(II) and Pb(II) onto a grafted silica:isotherms and kinetic models. Water Res. 37, 3079 (2003).

    Article  CAS  Google Scholar 

  42. H.K. An, B.Y. Park, D.S. Kim: Crab shell for the removal of heavy metals from aqueous solution. Water Res. 15, 3551 (2001).

    Article  Google Scholar 

  43. V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix: Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. B(105), 121 (2003).

    Article  CAS  Google Scholar 

  44. J. Ayala, F. Blanco, P. Garcia, P. Rodriguez, J. Sancho: Asturian fly ash as a heavy metals removal material. Fuel 77, 1147 (1998).

    Article  CAS  Google Scholar 

  45. D.N. Weldon, W.J. Blau, H.W. Zandbergen: A high resolution electron microscopy investigation of curvature in carbon nanotube. Chem. Phys. Lett. 241, 365 (1995).

    Article  CAS  Google Scholar 

  46. P.H. Lambin, A.A. Lucas, J.C. Charlier: Electron properties of carbon nanotubes containing. J. Phys. Chem. Solids. 58, 1833 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Huei Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, SH., Horng, JJ. & Tsai, CK. Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. Journal of Materials Research 21, 1269–1273 (2006). https://doi.org/10.1557/jmr.2006.0155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0155

Navigation