Skip to main content
Log in

Tensile and fracture properties of NiAl/Ni micro-laminated composites prepared by reaction synthesis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical properties of NiAl/Ni micro-laminated composites with highly gradient microstructure have been investigated. Two types of composites with different gradient microstructures were prepared by reaction synthesis. Intermetallics of type I and type II composites mainly consisted of Al-rich Ni0.45Al0.55 with variable thickness and Ni-rich Ni0.58Al0.42 with similar thickness, respectively. As intermetallic volume fraction increased, yield strength of type II followed the rule-of-mixture well, while that of type I deviated due to the composition variation of intermetallic phases. Fracture toughness of type II was higher than that of type I, and all showed KR curves with upward curvature by large-scale bridging. Even though the relative strength of constituent phases in intermetallic/metal laminates was not constant due to the gradient microstructure, the fracture mode transition showed similar behavior to that of metal/ceramic laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Was, T. Foecke: Deformation and fracture in microlaminates. Thin Solid Films 286, 1 (1996).

    Article  CAS  Google Scholar 

  2. K.S. Kumar, G. Bao: Intermetallic-matrix composites: An overview. Comp. Sci. Technol. 52, 127 (1994).

    Article  CAS  Google Scholar 

  3. M. Enoki, A. Ohta, D.S. Chung, M. Watanabe, T. Kishi: Crack propagation behavior of Ti/Ti–Al layered materials. J. Jpn. Inst. Metals 64, 1076 (2000).

    Article  CAS  Google Scholar 

  4. D.S. Chung, M. Enoki, T. Kishi: Microstructural analysis and mechanical properties of in situ Nb/Nb-aluminide layered materials. Sci. Technol. Adv. Mater. 3, 129 (2002).

    Article  CAS  Google Scholar 

  5. H.Y. Kim, D.S. Chung, S.H. Hong: Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites. Mater. Sci. Eng. A 396, 376 (2005).

    Article  Google Scholar 

  6. D.S. Chung, J.K. Kim, M. Enoki: In-situ fabrication and fracture characteristics of structural gradient Ni/Ni-aluminide/Ti/Ti-aluminide layered materials. Mater. Sci. Forum 475–479, 1521 (2005).

    Article  Google Scholar 

  7. U. Anselmi-Tamburini, Z.A. Munir: The propagation of a solid-state combustion wave in Ni–Al foils. J. Appl. Phys. 66, 5039 (1989).

    Article  CAS  Google Scholar 

  8. J.C. Rawers, D.E. Alman, J.A. Hawk: Overview: Layered metal/intermetallic composites formed by SHS reactions. Int. J. Self-Prop. High Temp. Synth. 2(1), 12 (1993).

    CAS  Google Scholar 

  9. D.E. Alman, J.C. Rawers, J.A. Hawk: Microstructural and failure characteristics of metal-intermetallic layered sheet composites. Metall. Mater. Trans. A 26A, 589 (1995).

    Article  CAS  Google Scholar 

  10. T.S. Dyer, Z.A. Munir: The synthesis of nickel aluminides by multilayer self-propagating combustion. Metall. Mater. Trans. B 26B, 603 (1995).

    Article  CAS  Google Scholar 

  11. A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey: Resistance-curve and fracture behaviour of Ti–Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater. 51, 2933 (2003).

    Article  CAS  Google Scholar 

  12. H.C. Cao, A.G. Evans: On crack extension in ductile/brittle laminates. Acta Metall. Mater. 39, 2997 (1991).

    Article  CAS  Google Scholar 

  13. M.C. Shaw, D.B. Marshall, M.S. Dadkhah, A.G. Evans: Cracking and damage mechanisms in ceramic/metal multilayers. Acta Metall. Mater. 41, 3311 (1993).

    Article  CAS  Google Scholar 

  14. Y. Huang, H.W. Zhang, F. Wu: Multiple cracking in metal-ceramic laminates. Int. J. Solids Struct. 31, 2753 (1994).

    Article  Google Scholar 

  15. Y. Huang, H.W. Zhang: The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates. Acta Metall. Mater. 43, 1523 (1995).

    Article  CAS  Google Scholar 

  16. K.L. Hwu, B. Derby: Fracture of metal/ceramic laminates—I. transition from single to multiple cracking. Acta Metall. Mater. 47, 529 (1999).

    Article  CAS  Google Scholar 

  17. ASTM E399-90, Annual Book of ASTM Standards Vol. 08.07. (ASTM International, 1991), p. 408.

    Google Scholar 

  18. ASTM E1290-93, Annual Book of ASTM Standards Vol. 08.08. (ASTM International, 1993), p. 828.

    Google Scholar 

  19. P. Zhu, J.C.M. Li, C.T. Liu: Reaction mechanism of combustion synthesis of NiAl. Mater. Sci. Eng. A 329, 57 (2002).

    Article  Google Scholar 

  20. H. Numakura, T. Ikeda, H. Nakajima, M. Koiwa: Diffusion in Ni3Al, Ni3Ga and Ni3Ge. Mater. Sci. Eng. A 312, 109 (2001).

    Article  Google Scholar 

  21. R.D. Noebe, R.R. Bowman, M.V. Nathal: Physical and mechanical properties of the B2 compound NiAl. Int. Mater. Rev. 38(4), 193 (1993).

    Article  CAS  Google Scholar 

  22. J. Rawers, K. Perry: Crack initiation in laminated metal-intermetallic composites. J. Mater. Sci. 31, 3501 (1996).

    Article  CAS  Google Scholar 

  23. G.E. Dieter: Mechanical Metallurgy, 2nd ed. (McGraw-Hill Book Co., New York, 1976), p. 77.

    Google Scholar 

  24. S.V. Kamat, J.P. Hirth, F.W. Zok: Effects of notch root radius on crack initiation and growth toughnesses of a cross-ply Ti–6Al–4V/SiC composite. Acta Mater. 44, 1831 (1996).

    Article  CAS  Google Scholar 

  25. J.Y. Shen, J.P. Hirth, F.W. Zok, J.A. Heathcote: Effect of notch root radius on the initiation toughness of a C-fiber/SiC-matrix composite. Scripta Mater. 38(1), 15 (1998).

    Article  CAS  Google Scholar 

  26. F. Zok, C.L. Hom: Large scale bridging in brittle matrix composites. Acta Metall. Mater. 38, 1895 (1990).

    Article  CAS  Google Scholar 

  27. D.R. Bloyer, K.T.V. Rao, R.O. Ritchie: Resistance-curve toughening in ductile/brittle layered structures: Behavior in Nb/Nb3Al laminates. Mater. Sci. Eng. A 216(1-2), 80 (1996).

    Article  Google Scholar 

  28. B.N. Cox, D.B. Marshall: Stable and unstable solutions for bridged cracks in various specimens. Acta Metall. Mater. 39, 579 (1991).

    Article  Google Scholar 

  29. H. Tada, P. Paris, G. Irwin: The Stress Analysis of Cracks Handbook, 2nd ed. (Paris Prod. Inc., St. Louis, MO, 1985).

    Google Scholar 

  30. D.R. Bloyer, K.T.V. Rao, R.O. Ritchie: Fracture toughness and R-curve behaviour of laminated brittle-matrix composites. Metall. Mater. Trans. A 29A, 2483 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon H. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.Y., Chung, D.S., Enoki, M. et al. Tensile and fracture properties of NiAl/Ni micro-laminated composites prepared by reaction synthesis. Journal of Materials Research 21, 1141–1149 (2006). https://doi.org/10.1557/jmr.2006.0154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0154

Navigation