Skip to main content
Log in

Two-dimensional imaging of the potential distribution within a core/shell nanowire by electron holography

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electrostatic potentials within a core/shell nanowire structure, composed of an intrinsic germanium core surrounded by its oxide and a heavily doped germanium shell, were investigated by electron holographic analysis on its cross-section. The potential distribution resulting from interface charges as well as dopants was successfully imaged. The surface potential, screening length, and doping concentration for the heavily doped germanium shell were determined quantitatively from the potential image. These characteristics were compared with values obtained from a numerical solution of Poisson’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Law, J. Goldberger, P. Yang: Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 34, 83 (2004).

    Article  CAS  Google Scholar 

  2. L.J. Lauhon, M.S. Gudiksen, and C.M. Lieber: Semiconductor nanowire heterostructures. Philos. Trans. R. Soc. London, Ser. A, Math. Phys. Eng. Sci. 362, 1247 (2004).

    Article  CAS  Google Scholar 

  3. F. Berz The surface space charge layer, in Surface Physics of Phosphors and Semiconductors edited by C.G. Scott and C.E. Reed (Academic Press, New York, 1975), p. 143.

  4. N. Tabet, M. Faiz, N.M. Hamdan, Z. Hussain: High resolution XPS study of oxide layers grown on Ge substrates. Surf. Sci. 523, 68 (2003).

    Article  CAS  Google Scholar 

  5. J.S. Hovis, R.J. Hamers, C.M. Greenlief: Preparation of clean and atomically flat germanium(001) surfaces. Surf. Sci. 440, L815 (1999).

    Article  CAS  Google Scholar 

  6. D. Wang, Y. Chang, Q. Wang, J. Cao, D.B. Farmer, R. Gordon, H. Dai: Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 126, 11602 (2004).

    Article  CAS  Google Scholar 

  7. P.A. Midgley: An introduction to off-axis electron holography. Micron 32, 167 (2001).

    Article  CAS  Google Scholar 

  8. T. Hanrath, B.A. Korgel: Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv. Mater. 15, 437 (2003).

    Article  CAS  Google Scholar 

  9. Y.Y. Wang, M. Kawasaki, J. Bruley, M. Gribelyuk, A. Domenicucci, J. Gaudiello: Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices. Ultramicroscopy 101, 63 (2004).

    Article  CAS  Google Scholar 

  10. M.R. McCartney, ASU Holography (Arizona State University, Tempe, AZ, 2003) (unpublished software).

    Google Scholar 

  11. D.C. Ghiglia, M.D. Pritt: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

    Google Scholar 

  12. Z. Wang, T. Hirayama, K. Sasaki, H. Saka, N. Kato: Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focused ion beam. Appl. Phys. Lett. 80, 246 (2002).

    Article  CAS  Google Scholar 

  13. P. Handler Electrical properties of a clean germanium surface, in Semiconductor Surface Physics, edited by R.H. Kingston (University of Pennsylvania Press, Philadelphia, PA, 1957), p. 23.

  14. M. Gajdardziska-Josifovska, A.H. Carim Applications of electron holography, in Introduction to Electron Holography, edited by E. Völkl, L.F. Allard, and D.C. Joy (Kluwer Academic, New York, 1999), p. 267.

  15. J. Chung, L. Rabenberg: Mapping of electrostatic potentials within core-shell nanowires by electron holography. Appl. Phys. Lett. 88, 013106 (2006).

    Article  Google Scholar 

  16. Y.C. Wang, T.M. Chou, M. Libera, T.F. Kelly: Transmission electron holography of silicon nanospheres with surface oxide layers. Appl. Phys. Lett. 70, 1296 (1997).

    Article  CAS  Google Scholar 

  17. W.D. Rau, P. Schwander, F.H. Braumann, W. Hoppner, A. Ourmazd: Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614 (1999).

    Article  CAS  Google Scholar 

  18. Z. Wang, T. Kato, N. Shibata, T. Hirayama, N. Kato, K. Sasaki, H. Saka: Characterizing an implanted Si/Si p -n junction with lower doping level by combined electron holography and focused-ion-beam milling. Appl. Phys. Lett. 81, 478 (2002).

    Article  CAS  Google Scholar 

  19. K.S. Ko, W.C. Jung, J. Chung, L. Rabenberg Damage caused by transverse scattering of gallium during FIB milling, in Proceedings of Microscopy and Microanalysis 2004 edited by I.M. Anderson, R. Price, E. Hall, E. Clark, and S. McKernan (Cambridge University Press, New York, 2004), 1170CD.

  20. R. Seiwatz, M. Green: Space charge calculations for semiconductors. J. Appl. Phys. 29, 1034 (1958).

    Article  CAS  Google Scholar 

  21. F. Stern, W.E. Howard: Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163, 816 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lew Rabenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, J., Rabenberg, L. Two-dimensional imaging of the potential distribution within a core/shell nanowire by electron holography. Journal of Materials Research 21, 1215–1220 (2006). https://doi.org/10.1557/jmr.2006.0142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0142

Navigation