Skip to main content
Log in

On determination of material parameters from loading and unloading responses in nanoindentation with a single sharp indenter

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper quantitatively describes the loading-unloading response in nanoindentation with sharp indenters using scaling analyses and finite element simulations. Explicit forward and inverse scaling functions for an indentation unloading have been obtained and related to those functions for the loading response [L. Wang et al., J. Material Res. 20(4), 987–1001 (2005)]. The scaling functions have been obtained by fitting the large deformation finite element simulations and are valid from the elastic to the full plastic indentation regimes. Using the explicit forward functions for loading and unloading, full indentation responses for a wide range of materials can be obtained without use of finite element calculations. The corresponding inverse scaling functions allow one to obtain material properties from the indentation measurements. The relation between the work of indentation and the ratio between hardness and modulus has also been studied. Using these scaling functions, the issue of nonuniqueness of the determination of material modulus, yield stress, and strain-hardening exponent from nanoindentation measurements with a single sharp indenter has been further investigated. It is shown that a limited material parameter range in the elastoplastic regime can be defined where the material modulus, yield stress, and strain-hardening exponent may be determined from only one full indentation response. The error of such property determination from scattering in experimental measurements is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Doerner, W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  3. W.C. Oliver, G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  4. Fischer-A.C. Cripps: Nanoindentation, Mechanical Engineering Series (Springer-Verlag, Berlin, 2002).

    Book  Google Scholar 

  5. D. Tabor: Indentation hardness: Fifty years on—a personal view. Philos. Mag. A 74, 1207 (1996).

    Article  CAS  Google Scholar 

  6. A.K. Bhattacharya, W.D. Nix: Finite element simulation of indentation experiments. Int. J. Solids Struct. 24, 881 (1988).

    Article  Google Scholar 

  7. M. Dao, N. Chollacoop, Van K.J. Vliet, T.A. Venkatesh, S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  8. A. Bolshakov, G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  9. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, T.A. Friedmann: Finite-element modeling of nanoindentation. J. Appl. Phys. 85, 1460 (1999).

    Article  CAS  Google Scholar 

  10. M. Sakai, T. Akatsu, S. Numata: Finite element analysis for conical indentation unloading of elastic plastic materials with strain hardening. Acta Mater. 52, 2359 (2004).

    Article  CAS  Google Scholar 

  11. M. Mata, M. Anglada, J. Alcala: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).

    Article  CAS  Google Scholar 

  12. Y.T. Cheng, C.M. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  13. C.M. Cheng, Y.T. Cheng: Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  14. Y.T. Cheng, C.M. Cheng: What is indentation hardness? Surf. Coat. Technol. 133, 417 (2000).

    Article  Google Scholar 

  15. Y.T. Cheng, Z. Li, C.M. Cheng: Scaling relationships for indentation measurements. Philos. Mag. A 82, 1821 (2002).

    Article  CAS  Google Scholar 

  16. L. Wang, S.I. Rokhlin: Universal scaling functions for continuous stiffness nanoindentation with sharp indenters. Int. J. Solids Struct. 42, 3807 (2005).

    Article  Google Scholar 

  17. L. Wang, M. Ganor, S.I. Rokhlin: Inverse scaling functions in nanoindentation with sharp indenters: Determination of material properties. J. Mater. Res. 20, 987 (2005).

    Article  CAS  Google Scholar 

  18. M. Mata, J. Alcalá: Mechanical properties evaluation through indentation experiments in elasto-plastic and fully plastic contact regimes. J. Mater. Res. 18, 1705 (2003).

    Article  CAS  Google Scholar 

  19. Z.H. Xu, D. Rowcliffe: Method to determine the plastic properties of bulk materials by nanoindentation. Philos. Mag. A 82, 1893 (2002).

    Article  CAS  Google Scholar 

  20. J.L. Bucaille, S. Stauss, E. Felder, J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  21. N. Chollacoop, M. Dao, S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  22. K.K. Tho, S. Swaddiwudhipond, Z.S. Liu, S. Hua: Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res. 19, 2498 (2004).

    Article  CAS  Google Scholar 

  23. K.K. Tho, S. Swaddiwudhipond, Z.S. Liu, K. Zeng: Simulation of instrumented indentation and material characterization. Mater. Sci. Eng. A 390(2005), 202–209.

    Article  Google Scholar 

  24. J. Alkorta, J.M. Martinez-Esnaola, J.G. Sevillano: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data. J. Mater. Res. 20, 432 (2005).

    Article  CAS  Google Scholar 

  25. O. Casals, J. Alcalá: The duality in mechanical property extraction from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 53, 3545 (2005).

    Article  CAS  Google Scholar 

  26. D.L. Joslin, W.C. Oliver: A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123 (1990).

    Article  CAS  Google Scholar 

  27. L. Wang, M. Ganor, S.I. Rokhlin, A. Grill: Mechanical properties of ultra-low dielectric constant SiCOH films: Nanoindentation measurements. J. Mater. Res. 20(8), 2080 (2005).

    Article  CAS  Google Scholar 

  28. G.M. Pharr, A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rokhlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Rokhlin, S.I. On determination of material parameters from loading and unloading responses in nanoindentation with a single sharp indenter. Journal of Materials Research 21, 995–1011 (2006). https://doi.org/10.1557/jmr.2006.0130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0130

Navigation