Skip to main content
Log in

Mechanisms of nanoindentation on single-walled carbon nanotubes: The effect of nanotube length

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanisms of nanoindentation on single-walled carbon nanotubes (SWCNTs) have been studied by using molecular dynamics simulation and continuum analysis during which a flat layer of diamond atoms is pressed down incrementally on a vertically aligned SWCNT. SWCNTs are divided into three distinct categories based on their aspect ratios, such that the nanotube behavior transits from a shell (short tube) to a beam (long tube). Molecular dynamics simulations are used to explore the diverse indentation characteristics in each domain, where the relationships between the strain energy and indentation depth during loading, unloading, and reloading are continuously recorded. The nanoindentation mechanisms are characterized by the critical indentation depth, maximum strain energy and force associated with buckling, as well as with the evolution of carbon bond length and morphology of the SWCNTs. Bifurcation behaviors are explored by investigating the loading-unloading-reloading behaviors of the nanotubes. Parallel finite element simulations are also used to study the pre- and post-buckling behaviors of SWCNT by incorporating the van der Waals interaction into the continuum code. It is found that, for the most part, continuum analysis can effectively capture the overall indentation characteristics, yet some details related to the atomic characteristics of nanoindentation may only be revealed by molecular dynamics simulation. Finally, an indentation mechanism map is derived by comparing behaviors of SWCNTs with different aspect and section ratios. Focusing on the effects of nanotube length, this paper is the first of a series of numerical studies on the indentation mechanisms of carbon nanotubes, which may be used to determine the intrinsic mechanical properties of SWCNTs by means of nanoindentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    Article  CAS  Google Scholar 

  3. S.J. Tans, R.M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1999).

    Article  Google Scholar 

  4. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Ccbert, R.E. Smalley: Nanotubes as nanoprobes in scanning-probe microscopy. Nature 384, 147 (1996).

    CAS  Google Scholar 

  5. P. Pancharal, Z.L. Wang, D. Ugarte, W. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).

    Article  Google Scholar 

  6. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai: Nanotube molecular wires as chemical sensors. Science 287, 622 (2000).

    CAS  Google Scholar 

  7. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).

    Article  CAS  Google Scholar 

  8. Q.H. Wang, M. Yan, R.P.H. Chang: A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72, 2912 (1998).

    Article  CAS  Google Scholar 

  9. C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, W.S. Kim, Y.H. Lee, W.B. Choi, N.S. Lee, J.M. Kim, Y.G. Choi, S.C. Yu: Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition. Appl. Phys. Lett. 75, 1721 (1999).

    Article  CAS  Google Scholar 

  10. P. Kim, C.M. Lieber: Nanotube nanotweezers. Science 286, 2148 (1999).

    Article  CAS  Google Scholar 

  11. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy: Young’s modulus of single-walled nanotubes. Phys. Rev. Lett. 58, 14013 (1998).

    CAS  Google Scholar 

  12. E.W. Wong, P.E. Sheehan, C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes and carbon nanotubes. Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  13. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).

    Article  CAS  Google Scholar 

  14. G.M. Pharr: Measurement of mechanical properties by ultra-low-load indentation. Mater. Sci. Eng. A 253, 151 (1998).

    Article  Google Scholar 

  15. J.F. Waters, L. Riester, M. Jouzi, P.R. Guduru, J.M. Xu: Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression. Appl. Phys. Lett. 85, 1787 (2004).

    Article  CAS  Google Scholar 

  16. H.J. Qi, K.B.K. Teo, K.K.S. Lau, M.C. Boyce, W.I. Milne, J. Robertson, K.K. Gleason: Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J. Mech. Phys. Solids 51, 2213 (2004).

    Article  Google Scholar 

  17. X. Zhou, J.J. Zhou, Z.C. Ou-Yang: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62, 13692 (2000).

    Article  Google Scholar 

  18. B. Yakobson, C. Brabec, J. Bernholc: Nanomechanics of carbon tubes: Instabilities beyond the linear response. Phys. Rev. Lett. 76, 2511 (1996).

    Article  CAS  Google Scholar 

  19. Z. Tu, Z. Ou-Yang: Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65, 233407 (2002).

    Article  Google Scholar 

  20. K.N. Kundin, G.E. Scuseria, B.I. Yakobson: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001).

    Article  Google Scholar 

  21. M.J. Buehler, Y. Kong, H. Gao: Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 246 (2004).

    Article  Google Scholar 

  22. A. Pantano, D.M. Parks, M.C. Boyce: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789 (2004).

    Article  CAS  Google Scholar 

  23. H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, K.C. Hwang: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429 (2003).

    Article  CAS  Google Scholar 

  24. P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang: The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893 (2002).

    Article  Google Scholar 

  25. X. Chen, G. Cao: A new structural mechanics approach of single-walled carbon nanotubes generalized from atomistic simulation. Nanotechnology 17, 1 (2006).

    Article  Google Scholar 

  26. H. Sun, P. Ren, J.R. Fried: The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8, 229 (1998).

    Article  CAS  Google Scholar 

  27. H. Sun: COMPASS: An ab initio force field optimized for condensed-phase applications, overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338 (1998).

    Article  CAS  Google Scholar 

  28. D. Rigby, H. Sun, B.E. Eichinger: Computer simulations of poly(ethylene oxides): Force field, PVT diagram and cyclization behavior. Polym. Int. 44, 311 (1998).

    Article  Google Scholar 

  29. Accelrys: http://www.accelrys.com/mstudio/ms_modeling/discover.html (2005).

  30. J. Tersoff: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988).

    Article  CAS  Google Scholar 

  31. D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990).

    Article  CAS  Google Scholar 

  32. ABAQUS: ABAQUS 6.4 User’s Manual. (ABAQUS Inc., Pawtucket, RI, 2004).

    Google Scholar 

  33. A. Pantano, D.M. Parks, M.C. Boyce, M.B. Nardelli: Mixed finite-element-tight binding electromechanical analysis of carbon nanotubes. J. Appl. Phys. 96, 6756 (2004).

    Article  CAS  Google Scholar 

  34. M. Grujicica, G. Cao, B. Pandurangana, W.N. Royb: Finite element analysis-based design of a fluid-flow control nano-valve. Mater. Sci. Eng. B 117, 53 (2005).

    Article  Google Scholar 

  35. S. Timoshenko, Woinowsky-S. Krieger: Theory of Plates and Shells, 2nd ed. (McGraw-Hill, New York, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, G., Chen, X. Mechanisms of nanoindentation on single-walled carbon nanotubes: The effect of nanotube length. Journal of Materials Research 21, 1048–1070 (2006). https://doi.org/10.1557/jmr.2006.0128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0128

Navigation