Skip to main content
Log in

Crystallization kinetics of homogeneously precipitated lead zirconate titanate using urea: Comparison with the conventional ammonia precipitated sample

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ultrafine, PbZr0.53Ti0.47O3 powder was synthesized by homogeneous precipitation of metal ions in aqueous solution using urea. The results obtained from different characterization methods were compared with those obtained from the conventional precipitation method using ammonia in terms of crystallization, homogeneity, and microstructure. The as-dried precipitate converted to the single-phase crystalline lead zirconate titanate powder when calcined at 550 °C and above. The calcined powder showed smaller particle size, minimum agglomeration, and uniform shape. The growth of the particles was very little at higher temperatures. Powdered samples that precipitated using urea crystallized directly to rhombohedral lead zirconate titanate, without any intermediate pyrochlore phase formation. The NH3-precipitated powder converted to rhombohedral lead zirconate titanate via metastable pyrochlore and it showed phase segregation upon annealing at higher temperatures. The reaction kinetics has been studied by x-ray diffraction, differential thermal analysis, and differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Moulson, J.M. Herbert: Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, UK, 1990).

    Google Scholar 

  2. B. Jaffe, W.R. Cook, H. Jaffe: Piezoelectric Ceramics (Academic Press, New York, 1971).

    Google Scholar 

  3. A. Wu, P.M. Vilarinh, I.M. Salvado Miranda, J.L. Baptista: Sol-gel preparation of lead zirconate titanate powder and ceramics: Effect of alkoxide stablizers and lead precursor. J. Am. Ceram. Soc. 83(6), 1379 (2000).

    Article  CAS  Google Scholar 

  4. M. Zang, I.M. Salvado Miranda, P.M. Vilarinh: Synthesis and characterization of lead zirconate titanate fibres prepared by sol-gel method: The role of acid. J. Am. Ceram. Soc. 86(5), 775 (2003).

    Article  Google Scholar 

  5. D.E. Lakeman, D.A. Payne: Processing effects in the sol-gel preparation of PZT derived gel powders and ferroelectric thin layers. J. Am. Ceram. Soc. 75(11), 3091 (2003).

    Article  Google Scholar 

  6. R. Zimmermann-Chopin, S. Auer: Spray drying of sol-gel precursors for the manufacturing of PZT powders. J. Sol-Gel Sci. Technol. 3, 101 (1994).

    Article  CAS  Google Scholar 

  7. H. Chen, J. Ma, B. Jhu, Y. Cui: Reaction mechanisms in the formation of lead zirconate titanate solid solutions under hydrothermal conditions. J. Am. Ceram. Soc. 76(3), 625 (1993).

    Article  Google Scholar 

  8. J. Moon, J.A. Kerchner, H. Krarup, J.H. Adair: Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. J. Mater. Res. 14(2), 425 (1999).

    Article  CAS  Google Scholar 

  9. X. Junmin, J. Wang: Lead zirconate titanate via reaction sintering of hydroxide precursors. J. Mater. Res. 14(4), 1503 (1999).

    Article  Google Scholar 

  10. J. Scheafer, W. Sigmund, S. Roy, F. Aldinger: Low-temperature synthesis of ultrafine Pb(Z,rTi)O3 powder. J. Mater. Res. 12(10), 2518 (1997).

    Article  Google Scholar 

  11. D.S. Seo, H. Kim, H.C. Jung, J.K. Lee: Synthesis and characterization of TiO2 nanocrystalline powder prepared by homogeneous precipitation using urea. J. Mater. Res. 18(3), 571 (2003).

    Article  CAS  Google Scholar 

  12. T. Hwang, D.K. Hwang: Preparation of nanocrystalline lead zirconate powder by homogeneous precipitation using hydrogen peroxide and urea. Mater. Lett. 57, 2472 (2003).

    Article  Google Scholar 

  13. E.E. Oren, E. Taspinar, A. Tas Cuneyt: Preparation of lead zirconate by homogeneous precipitation and calcination. J. Am. Ceram. Soc. 80(10), 2714 (1997).

    Article  CAS  Google Scholar 

  14. S. Sohna, Y. Kwonb, Y. Kimc, D. Kimd: Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method. Powder Technol. 142, 136 (2004).

    Article  Google Scholar 

  15. A.P. Oliveira, M.L. Torem: The influence of precipitation variables on zirconia powder synthesis. Powder Technol. 119, 181 (2001).

    Article  CAS  Google Scholar 

  16. A. Tas Cüneyt: Preparation of lead zirconate titanate by homogeneous precipitation and calcination. J. Am. Ceram. Soc. 82(6), 1582 (1999).

    Google Scholar 

  17. J.P.S. Powder Diffraction File, Card Nos. 28-0529, 41-0677, 72-1144, and 75-0991.

  18. B. Aiken, W.P. Hsu, E. Matijevic: Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, yttrium (III) and mixed yttrium(III)/ cerium(III) systems. J. Am. Ceram. Soc. 71(10), 845 (1988).

    Article  CAS  Google Scholar 

  19. W.R. Schwartz, D.A. Payne Crystallization behavior of chemically prepared and rapidly solidified PbTiO3, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 199.

    CAS  Google Scholar 

  20. K.C. Chen, A. Janah, J.D. Mackenzie Crystallization of oxide films derived from metallo-organic precursors, in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 731.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Bysakh, S. & Subrahmanyam, J. Crystallization kinetics of homogeneously precipitated lead zirconate titanate using urea: Comparison with the conventional ammonia precipitated sample. Journal of Materials Research 21, 856–863 (2006). https://doi.org/10.1557/jmr.2006.0122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0122

Navigation