Skip to main content
Log in

Synthesis and microstructural characterization of inorganic fullerene-like MoS2 and graphite-MoS2 hybrid nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structures of inorganic fullerene-like (IF) MoS2 nanoparticles produced by arc discharge in water are reported in this paper. To adjust the chemistry and structure of IF nanoparticles, 2H–MoS2, graphite and composite 2H–MoS2/graphite rods were used as electrodes in the arc synthesis. In comparison to using MoS2 as both anode and cathode, mixed electrodes (graphite and MoS2) significantly increased the discharge current. Various IF-MoS2 nanoparticles were successfully produced by the water-based arc method, and their microstructures were studied using a transmission electron microscope equipped with an x-ray energy dispersive spectrometer. The IF–MoS2 nanoparticles commonly had a solid core wrapped with a few MoS2 layers and exhibit some differences in size and geometry. The IF-MoS2 nanoparticles were typically 5–30 nm in diameter as observed by transmission electron microscopy. Tiny IF-MoS2 nanoparticles (<10 nm) along with fragments of lamellar MoS2 were produced from arc discharge in water using both graphite and MoS2 electrodes. Carbon nano-onions and hybrid nanoparticles consisting of carbon and MoS2 were synthesized by using mixed electrodes of graphite and 2H–MoS2. The hybrid nanoparticles were MoS2 cores covered by a graphite shell. Our results show that the water-based arc method provides a simple tool for producing a variety of nanoparticles including some familiar and some new hybrid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ishigami, J. Cumings, A. Zettl, S. Chen: A simple method for the continuous production of carbon nanotubes. Chem. Phys. Lett. 319, 457 (2000).

    Article  CAS  Google Scholar 

  2. Y.L. Hsin, K.C. Hwang, F.R. Chen, J.J. Kai: Production and in-situ metal filling of carbon nanotubes in water. Adv. Mater. 13, 830 (2001).

    Article  CAS  Google Scholar 

  3. H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, Y.F. Zhu, D.H. Wu, X.H. Chen: Formation of carbon nanotubes in water by the electric-arc technique. Chem. Phys. Lett. 366, 664 (2002).

    Article  CAS  Google Scholar 

  4. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A.J. Amaratunga: Nanotechnology—Synthesis of carbon ‘onions’ in water. Nature 414, 506 (2001).

    Article  CAS  Google Scholar 

  5. H. Wang, M. Chhowalla, N. Sano, S. Jia, G.A.J. Amaratunga: Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology 15, 546 (2004).

    Article  CAS  Google Scholar 

  6. N. Sano: Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D Appl. Phys. 37, L17 (2004).

    Article  CAS  Google Scholar 

  7. N. Sano, M. Naito, M. Chhowalla, T. Kikuchi, S. Matsuda, K. Iimura, H. Wang, T. Kanki, G.A.J. Amaratunga: Pressure effects on nanotubes formation using the submerged arc in water method. Chem. Phys. Lett. 378, 29 (2003).

    Article  CAS  Google Scholar 

  8. N. Sano, T. Kikuchi, H. Wang, M. Chhowalla, G.A.J. Amaratunga: Carbon nanohorns hybridized with a metal-included nanocapsule. Carbon 42, 95 (2004).

    Article  CAS  Google Scholar 

  9. K.H. Ang, I. Alexandrou, N.D. Mathur, G.A.J. Amaratunga, S. Haq: The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water. Nanotechnology 15, 520 (2004).

    Article  CAS  Google Scholar 

  10. D. Bera, S.C. Kuiry, M. McCutchen, A. Kruize, H. Heinrich, M. Meyyappan, S. Seal: In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution. Chem. Phys. Lett. 386, 364 (2004).

    Article  CAS  Google Scholar 

  11. L.A. Montoro, R.C.Z. Lofrano, J.M. Rosolen: Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method. Carbon 43, 195 (2005).

    Article  Google Scholar 

  12. N. Sano: Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene. Mater. Chem. Phys. 88, 235 (2004).

    Article  CAS  Google Scholar 

  13. R. Tenne, L. Margulis, M. Genut, G. Hodes: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444 (1992).

    Article  CAS  Google Scholar 

  14. L. Margulis, G. Salitra, R. Tenne, M. Talianker: Nested fullerene-like structures. Nature 365, 113 (1993).

    Article  CAS  Google Scholar 

  15. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne: High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).

    Article  CAS  Google Scholar 

  16. P.A. Parilla, A.C. Dillon, K.M. Jones, G. Riker, D.L. Schulz, D.S. Ginley, M.J. Heben: The first true inorganic fullerenes. Nature 397, 114 (1999).

    Article  CAS  Google Scholar 

  17. R. Sen, A. Govindaraj, K. Suenaga, S. Suzuki, H. Kataura, S. Iijima, Y. Achiba: Encapsulated and hollow closed-cage structures of WS2 and MoS2 prepared by laser ablation at 450–1050 degrees C. Chem. Phys. Lett. 340, 242 (2001).

    Article  CAS  Google Scholar 

  18. M. Chhowalla, G.A.J. Amaratunga: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).

    Article  CAS  Google Scholar 

  19. M.M. Mdleleni, T. Hyeon, K.S. Suslick: Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 120, 6189 (1998).

    Article  CAS  Google Scholar 

  20. J. Chen, S.L. Li, Q. Xu, K. Tanaka: Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation. Chem. Commun. 16, 1722 (2002).

    Article  Google Scholar 

  21. M. Homyonfer, B. Alperson, Y. Rosenberg, L. Sapir, S.R. Cohen, G. Hodes, R. Tenne: Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning-probe microscopy. J. Am. Chem. Soc. 119, 2693 (1997).

    Article  CAS  Google Scholar 

  22. A. Rothschild, S.R. Cohen, R. Tenne: WS2 nanotubes as tips in scanning-probe microscopy. Appl. Phys. Lett. 75, 4025 (1999).

    Article  CAS  Google Scholar 

  23. L. Rapoport, Y. Bilik., Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).

    Article  CAS  Google Scholar 

  24. L. Rapoport, M. Lvovsky, I. Lapsker, V. Leshinsky, Y. Volovik, Y. Feldman, A. Zak, R. Tenne: Slow release of fullerene-like WS2 nanoparticles as a superior solid lubrication mechanism in composite matrices. Adv. Eng. Mater. 3, 71 (2001).

    Article  CAS  Google Scholar 

  25. J.J. Hu, J.S. Zabinski: Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM). Tribol. Lett. 18, 173 (2005).

    Article  CAS  Google Scholar 

  26. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A.J. Amaratunga, M. Naito, T. Kanki: Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett. 368, 331 (2003).

    Article  CAS  Google Scholar 

  27. J.J. Hu, J.E. Bultman, J.S. Zabinski: Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribol. Lett. 17, 543 (2004).

    Article  CAS  Google Scholar 

  28. A.R. Lansdown: Molybdenum Disulphide Lubrication, edited by D. Dowson (Elsevier, Amsterdam, 1999).

  29. F.J. Clauss: Solid Lubricants and Self-Lubricating Solids (Academic Press, New York, 1972).

    Google Scholar 

  30. S. Seraphin: Single-walled tubes and encapsulation of nanocrystals into carbon clusters. J. Electrochem. Soc. 142, 290 (1995).

    Article  CAS  Google Scholar 

  31. B.R. Elliott, J.J. Host, V.P. Dravid, M.H. Teng, J.H. Hwang: A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters. J. Mater. Res. 12, 3328 (1997).

    Article  CAS  Google Scholar 

  32. J.H.J. Scott, S.A. Majetich: Morphology, structure, and growth of nanoparticles produced in a carbon-arc. Phys. Rev. B 52, 12564 (1995).

    Article  CAS  Google Scholar 

  33. V.P. Dravid, J.J. Host, M.H. Teng, B.R. Elliott, J.H. Hwang, D.L. Johnson, T.O. Mason, J.R. Weertman: Controlled-size nanocapsules. Nature 374, 602 (1995).

    Article  CAS  Google Scholar 

  34. R. Tenne: Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem. Int. Ed. 42, 5124 (2003).

    Article  CAS  Google Scholar 

  35. P.Z. Si, M. Zhang, Z.D. Zhang, X.G. Zhao, X.L. Ma, D.Y. Geng: Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J. Mater. Sci. 38, 4287 (2005).

    Article  Google Scholar 

  36. N. Sano: Separated syntheses of Gd-hybridized single-wall carbon nanohorns, single-wall nanotubes and multi-wall nanostructures by arc discharge in water with support of gas injection. Carbon. 43, 450 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J.J., Sanders, J.H. & Zabinski, J.S. Synthesis and microstructural characterization of inorganic fullerene-like MoS2 and graphite-MoS2 hybrid nanoparticles. Journal of Materials Research 21, 1033–1040 (2006). https://doi.org/10.1557/jmr.2006.0118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0118

Navigation