Skip to main content
Log in

Revelation of a functional dependence of the sum of two uniaxial strengths/hardness on elastic work/total work of indentation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dimensional and finite element analyses were used to analyze the relationship between the mechanical properties and instrumented indentation response of materials. Results revealed the existence of a functional dependence of (engineering yield strength σE,y + engineering tensile strength σE,b)/Oliver & Pharr hardness on the ratio of reversible elastic work to total work obtained from an indentation test. The relationship links up the Oliver & Pharr hardness with the material strengths, although the Oliver & Pharr hardness may deviate from the true hardness when sinking in or piling up occurs. The functional relationship can further be used to estimate the sum σE,y + σE,b according to the data of an instrumented indentation test. The σE,y + σE,b value better reflects the strength of a material compared to the hardness value alone. The method was shown to be effective when applied to aluminum alloys. The relationship can further be used to estimate the fatigue limits, which are usually obtained from macroscopic fatigue tests in different modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor: The Hardness of Metals (Oxford, London, UK, 2000), pp. 104–106.

    Google Scholar 

  2. Y.T. Cheng, C.M. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  3. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  4. A.E. Giannakopoulos, S. Suresh: Determiniation of elastoplastic properties by instrumented sharp indentation. Scripta Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  5. K. Zeng, C.H. Chiu: An analysis of load-penetration curves from instrumented indentation. Acta Mater. 49, 3539 (2001).

    Article  CAS  Google Scholar 

  6. Y.T. Cheng, C.M. Cheng: Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  7. T.W. Capehart, Y.T. Cheng: Determining constitutive models from conical indentation: Sensitivity analysis. J. Mater. Res. 18, 827 (2003).

    Article  CAS  Google Scholar 

  8. K.K. Tho, S. Swaddiwudhipong, Z.S. Liu, K. Zeng, J. Hua: Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res. 19, 2498 (2004).

    Article  CAS  Google Scholar 

  9. J.L. Bucaille, S. Stauss, E. Felder, J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  10. Y. Cao, X. Qian, J. Lu, Z. Yao: An energy-based method to extract plastic properties of metal materials from conical indentation tests. J. Mater. Res. 20, 1194 (2005).

    Article  CAS  Google Scholar 

  11. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  12. G.M. Pharr, W.C. Oliver, F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  13. W.C. Oliver, G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  14. ABAQUS Version 6.2 (Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, 2001).

    Google Scholar 

  15. D. Ma, T. Zhang, C.W. Ong: Evaluation of effectiveness of representative methods for determining Young’s modulus and hardness from instrumented indentation data. J. Mater. Res. 21, 225 (2006).

    Article  CAS  Google Scholar 

  16. D. Ma, C.W. Ong, S.F. Wong: New relationship between Young’s modulus and nonideally sharp indentation parameters. J. Mater. Res. 19, 2144 (2004).

    Article  CAS  Google Scholar 

  17. D. Ma, C.W. Ong, J. Lu, J. He: Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip. J. Appl. Phys. 94, 288 (2003).

    Article  CAS  Google Scholar 

  18. Y. Song: Design, Selection and Prediction of Metallic Materials (Mechanical Industry Press, Beijing, China, 1998), p. 443.

    Google Scholar 

  19. H. Xu: Design of Fatigue Strength (Mechanical Industry Press, Beijing, China, 1981), p. 45 (in Chinese).

    Google Scholar 

  20. M. Li, O. Buxbaum, H. Lowak: Structure Design Against Fatigue (Mechanical Industry Press, Beijing, China, 1987), p. 31 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Wo Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, D., Zhang, T. & Ong, C.W. Revelation of a functional dependence of the sum of two uniaxial strengths/hardness on elastic work/total work of indentation. Journal of Materials Research 21, 895–903 (2006). https://doi.org/10.1557/jmr.2006.0111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0111

Navigation