Skip to main content
Log in

Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bulk glass formation of the Co–Cr–Mo–C–B–Er alloy system was investigated in this paper. The Co50Cr15Mo14C15B6 (at.%) alloy could be cast into fully glassy rod with a diameter up to 2 mm. By adding 2 at.% Er to this alloy, the critical diameter for glass formation reached 10 mm. The excellent glass formability of the Er-doped alloy was mainly attributed to its relatively large reduced glass transition temperature of 0.61, near-eutectic composition, and the necessity of redistribution of the Er atoms for precipitation of crystalline Co6Mo6C phase in the undercooled liquid on cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Turnbull: Under what conditions can a glass be formed. Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  2. Choi-H. Yim, R. Busch, W.L. Johnson: The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Lett. 83, 7993 (1998).

    Google Scholar 

  3. B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Greer: Amorphous metallic plastic. Phys. Rev. Lett. 94, 205502 (2005).

    Article  CAS  Google Scholar 

  4. Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).

    CAS  Google Scholar 

  5. V. Ponnambalam, S.J. Poon, G.J. Shiflet: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).

    Article  CAS  Google Scholar 

  6. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari: Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Mater. 52, 1631 (2004).

    Article  CAS  Google Scholar 

  7. W. Kraus and G. Nolze: Powder cell for powder pattern calculation and profile fitting, version 2.3. Available from: http://www.ccp14.ac.uk. Accessed June 2005.

    Google Scholar 

  8. A. Gebert, J. Eckert, and L. Schultz: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass. Acta Mater. 46, 5474 (1998).

    Article  Google Scholar 

  9. X.H. Lin, W.L. Johnson: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).

    Article  CAS  Google Scholar 

  10. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 (2004).

    Article  CAS  Google Scholar 

  11. H. Men, W.T. Kim, D.H. Kim: Glass formation and crystallization behavior in Mg65Cu25Y10-x Gdx (x = 0, 5, 10) alloys. J. Non-Cryst. Solids 337, 29 (2004).

    Article  CAS  Google Scholar 

  12. A.F. Well: Structural Inorganic Chemistry (Oxford University Press, Oxford, UK, 1984), p. 1382.

    Google Scholar 

  13. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen: Cohesion in Metals (North-Holland, Amsterdam, The Netherlands, 1989).

    Google Scholar 

  14. M. Widom, M. Mihalkovic: Stability of Fe-based alloys with structure type C6Cr23. J. Mater. Res. 20, 237 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Men, H., Pang, S.J. & Zhang, T. Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy. Journal of Materials Research 21, 958–961 (2006). https://doi.org/10.1557/jmr.2006.0109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0109

Navigation