Skip to main content
Log in

Enhanced thermal stability of the devitrified nanoscale icosahedral phase in novel multicomponent amorphous alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, details are given for the structural evolution of (Ti33Zr33Hf33)70(Ni50Cu50)20Al10, (Ti25Zr25Hf25Nb25)70(Ni50Cu50)20Al10, and (Ti33Zr33Hf33)70(Ni33Cu33Ag33)20Al10 amorphous alloys, part of wider program of alloy development by equiatomic substitution. All three alloys initially crystallize by forming a nanoscale icosahedral phase. However, at higher temperatures, their decomposition sequences differ significantly. The nanoscale icosahedral phase in the (Ti33Zr33Hf33)70(Ni50Cu50)20Al10 alloy decomposes into a mixture of Zr2Cu-type and icosahedral phases. This icosahedral phase still exists after heating up to 970 K, indicating a high thermal stability of this phase. The nanoscale icosahedral phase in the (Ti33Zr33Hf33)70(Ni33Cu33Ag33)20Al10 alloy also transforms into a mixture of Zr2Cu-type and icosahedral phase during the second exothermic reaction but then transforms into a mixture of Zr2Cu-type and Ti2Ni-type phases. The nanoscale icosahedral phase in the (Ti25Zr25Hf25Nb25)70(Ni50Cu50)20Al10 alloy decomposes into a mixture of Ti2Ni-type and MgZn2-type phases during the second exothermic reaction. It is concluded that the formation of the Zr2Cu-type phase retards the decomposition of the nanoscale icosahedral phase, which increases the thermal stability. In contrast, formation of Ti2Ni-type and MgZn2-type phases accelerates the decomposition of the nanoscale icosahedral phase, which decreases its thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, T. Zhang, J. Saida, M. Matsushita, M.W. Chen, T. Sakurai: Formation of icosahedral quasicrystalline phase in Zr–Al–Ni–Cu–M (M=Ag, Pd, Au or Pt) systems. Mater. Trans. JIM 40, 1181 (1999).

    Article  CAS  Google Scholar 

  2. A. Inoue, J. Saida, M. Matsushita, T. Sakurai: Formation of an icosahedral quasicrystalline phase in Zr65Al7.5Ni10M17.5 (M = Pd, Au or Pt) alloys. Mater. Trans. JIM 41, 362 (2000).

    Article  CAS  Google Scholar 

  3. A. Inoue, T. Zhang, M.W. Chen, T. Sakurai, J. Saida, M. Matsushita: Ductile quasicrystalline alloys. Appl. Phys. Lett. 76, 967 (2000).

    Article  CAS  Google Scholar 

  4. J. Saida, M. Matsushita, C. Li, A. Inoue: Formation of icosahedral quasicrystalline phase in Zr70Ni10M20(M = Pd, Au, Pt) ternary metallic glasses. Appl. Phys. Lett. 76, 3558 (2000).

    Article  CAS  Google Scholar 

  5. L.Q. Xing, J. Eckert, W. Löser, L. Schultz: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Apply. Phys. Lett. 74, 664 (1999).

    Article  CAS  Google Scholar 

  6. S. Scudino, U. Kühn, L. Schultz, H. Breitzke, K. Lüders, J. Eckert: Formation of quasicrystals in ball-milled amorphous Zr–Ti–Nb–Cu–Ni–Al alloys with different Nb content. J. Mater. Sci. 39, 5483 (2004).

    Article  CAS  Google Scholar 

  7. J. Saida, M. Matsushita, A. Inoue: Precipitation of an icosahedral quasicrystal phase in Zr70Pd20Ni10 amorphous alloy. Mater. Trans. JIM 41, 543 (2000).

    Article  CAS  Google Scholar 

  8. B. Cantor, K.B. Kim, P.J. Warren: Novel multicomponent amorphous alloys. Mater. Sci. Forum 386–388, 27 (2002).

    Article  Google Scholar 

  9. K.B. Kim, P.J. Warren, B. Cantor: Metallic glass formation in multicomponent (Ti,Zr,Hf,Nb)–(Ni,Cu,Ag)–Al alloys. J. Non-Cryst. Solids 317, 17 (2003).

    Article  CAS  Google Scholar 

  10. K.B. Kim, P.J. Warren, B. Cantor: Formation of metallic glasses in novel (Ti33Zr33Hf33)100-x-y (Ni50Cu50)x Aly alloys. Mater. Trans. JIM 44, 411 (2003).

    Article  CAS  Google Scholar 

  11. K.B. Kim, Y. Zhang, P.J. Warren, B. Cantor: Crystallisation behaviour in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique. Philos. Mag. 83, 2371 (2003).

    Article  CAS  Google Scholar 

  12. L.C. Zhang, J. Xu: Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)–(Cu, Ni, Co)–Al alloys with equiatomic substitution. J. Non-Cryst. Solids 347, 166 (2004).

    Article  CAS  Google Scholar 

  13. L.C. Zhang, Z.Q. Shen, J. Xu: Glass formation in a (Ti,Zr,Hf)–(Cu,Ni,Ag)–Al high-order alloy system by mechanical alloying. J. Mater. Res. 18, 2141 (2003).

    Article  CAS  Google Scholar 

  14. K.B. Kim, P.J. Warren, B. Cantor: Glass forming ability and crystallization behaviour of new multicomponent (Ti33Zr33Hf33)60(Ni50Cu50)20Al20 alloy developed by equiatomic substitution. J. Metastable Nanocryst. Mater. 15–16, 143 (2003).

    Google Scholar 

  15. K.B. Kim, P.J. Warren, B. Cantor: Glass forming ability of novel multicomponent (Ti33Zr33Hf33)–(Ni50Cu50)–Al alloys developed by equiatomic substitution. Mater. Sci. Eng. A 375–377, 317 (2004).

    Article  Google Scholar 

  16. Y.C. Kim, J.M. Park, J.K. Lee, W.T. Kim, D.H. Kim: Precipitation of stable icosahedral phase in Ti-based amorphous alloys. Mater. Trans. JIM 44, 1978 (2003).

    Article  CAS  Google Scholar 

  17. P.A. Bancel, P.A. Heiney: Icosahedral aluminum-transition-metal alloys. Phys. Rev. B 33, 7917 (1986).

    Article  CAS  Google Scholar 

  18. L.Q. Xing, Y.T. Shen, K.F. Kelton: Precipitation of an icosahedrally symmetric ordered phase in Zr–Ti–Cu–Ni–Al metallic glasses. Appl. Phys. Lett. 81, 3371 (2002).

    Article  CAS  Google Scholar 

  19. K.F. Kelton: Ti/Zr/Hf-based quasicrystals. Mater. Sci. Eng. A 375–377, 31 (2004).

    Article  Google Scholar 

  20. M.W. Chen, T. Zhang, A. Inoue, A. Sakai, T. Sakurai: Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl. Phys. Lett. 75, 1697 (1999).

    Article  CAS  Google Scholar 

  21. J.K. Lee, G. Choi, D.H. Kim, W.T. Kim: Formation of icosahedral phase from amorphous Zr65Al7.5Cu12.5Ni10Ag5 alloys. Appl. Phys. Lett. 77, 978 (2000).

    Article  CAS  Google Scholar 

  22. D. Turnbull: Under what conditions can a glass be formed. Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  23. Z.P. Lu, C.T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).

    Article  CAS  Google Scholar 

  24. W.J. Kim, K.F. Kelton: Icosahedral-phase formation and stability in Ti–Zr–Co alloys. Philos. Mag. Lett. 74, 439 (1996).

    Article  CAS  Google Scholar 

  25. E.H. Majzoub, R.G. Hennig, K.F. Kelton: Rietveld refinement and ab initio calculations of a C14-like Laves phase in Ti–Zr–Ni. Philos. Mag. Lett. 83, 65 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Kim.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.B., Warren, P.J., Cantor, B. et al. Enhanced thermal stability of the devitrified nanoscale icosahedral phase in novel multicomponent amorphous alloys. Journal of Materials Research 21, 823–831 (2006). https://doi.org/10.1557/jmr.2006.0103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0103

Navigation