Skip to main content
Log in

Sintered compacts of nano and micron-sized BaTiO3: Dramatic influence on the microstructure and dielectric properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sintered compacts of nano-sized and micron-sized BaTiO3 show sharp ferroelectric transition and high dielectric constant at specific compositions. The sintered compacts with 1 wt% nano-BaTiO3 show a maximum dielectric constant of 1680. At the transition temperature (Tc) there are two maxima at 0.5 and 2 wt%. The variation in the dielectric constant at Tc is also reflected in the behavior of the ferroelectric transition as studied by differential scanning calorimetry. This interesting oscillatory variation of the dielectric constant and dielectric loss with increase in the amount of nanoparticles in the sintered compacts is observed for the first time. The variation of the dielectric properties and the ferroelectric transition of the sintered compacts could be related to subtle changes in the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cooke, H. Jaffe: Piezoelectric Ceramics (Academic Press, London, UK, 1971).

    Google Scholar 

  2. G.H. Haertling: Ferroelectric ceramics: History and technology. J. Amer. Ceram. Soc. 82, 797 (1999).

    Article  CAS  Google Scholar 

  3. A. Beauger, J.C. Mutin, J.C. Niepce: Synthesis reaction of barium titanate (IV). Part 1. Effect of the gaseous atmosphere upon the thermal evolution of the system barium carbonate-titanium dioxide. J. Mater. Sci. 18, 3041 (1983).

    Article  CAS  Google Scholar 

  4. A. Beauger, J.C. Mutin, J.C. Niepce: Synthesis reaction of metatitanate BaTiO3. Part 2. Study of solid-solid reaction interfaces. J. Mater. Sci. 18, 3543 (1983).

    Article  CAS  Google Scholar 

  5. L. Hozer: Semiconductor Ceramics and Grain Boundary Effect (Ellis Horwood Press, New York, 1994), p. 119.

    Google Scholar 

  6. L.E. Cross, R.E. Newnham: History of Ferroelectrics Vol. III (American Ceramic Society, Westerville, OH, 1987).

  7. W.Y. Shih, W.H. Shih, I.A. Aksay: Size dependence of the ferroelectric transition of small BaTiO3 particles: Effect of depolarization. Phys. Rev. B. 50, 15575 (1994).

    Article  CAS  Google Scholar 

  8. K. Uchino: Materials issues in design and performance of piezoelectric actuators: An overview. Acta Mater. 46, 3745 (1998).

    Article  CAS  Google Scholar 

  9. W. Zhu, S.A. Akbar, R. Asiaie, P.K. Datta: Sintering and dielectric properties of hydrothermally synthesized cubic and tetragonal BaTiO3 powders. Jpn. J. Appl. Phys. 36, 214 (1997).

    Article  CAS  Google Scholar 

  10. R.L. Goldberg, S.W. Smith: Multilayer piezoelectric ceramics for two-dimensional array transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 41, 761 (1994).

    Article  CAS  Google Scholar 

  11. C.K. Kwok, S.B. Desu: Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J. Mater. Res. 8, 339 (1993).

    Article  Google Scholar 

  12. H. Hirashima, E. Onishi, M. Nakagowa: Preparation of PZT powders from metal alkoxides. J. Non-Cryst. Solids 121, 404 (1990).

    Article  CAS  Google Scholar 

  13. M.P. Pechini: Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitor, U.S. Patent No. 3 330 697 (1967).

    Google Scholar 

  14. M. Kakihana, M. Arima, Y. Nakamura, M. Yashima, M. Yoshimura: Spectroscopic characterization of precursors used in the pechini-type polymerizable complex processing of barium titanate. Chem. Mater. 11, 438 (1999).

    Article  CAS  Google Scholar 

  15. P.R. Arya, P. Jha, A.K. Ganguli: Synthesis, characterization and dielectric properties of nanometer-sized barium strontium titanates prepared by the polymeric citrate precursor method. J. Mater. Chem. 13, 415 (2003).

    Article  CAS  Google Scholar 

  16. P.R. Arya, P. Jha, G.N. Subbanna, A.K. Ganguli: Polymeric citrate precursor route to the synthesis of nano-sized barium lead titanates. Mater. Res. Bull. 38, 617 (2003).

    Article  CAS  Google Scholar 

  17. T. Ahmad, G. Kavitha, C. Narayana, A.K. Ganguli: Nanostructured barium titanate prepared through a modified reverse micellar route: Structural distortion and dielectric properties. J. Mater. Res. 20, 1415 (2005).

    Article  CAS  Google Scholar 

  18. R.M. German: Sintering Theory and Practice (John Wiley & Sons, New York, 1996), p. 86.

    Google Scholar 

  19. M. Takagi: Electron diffraction study of liquid-solid transition of thin metal films. J. Phys. Soc. Jpn. 9, 359 (1954).

    Article  Google Scholar 

  20. P. Buffat, J.P. Borel: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  21. M. Zhang, M.Y. Efremov, S. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wiseleden, J.E. Greene, L.H. Allen: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548 (2000).

    Article  CAS  Google Scholar 

  22. Y. Champion, J. Bigot: Synthesis and structural analysis of Al nanocrystalline powders. Nanostruct. Mater. 10, 1097 (1998).

    Article  CAS  Google Scholar 

  23. J.E. Bonevics, L.D. Marks: The sintering behavior of ultrafine alumina particles. J. Mater. Res. 7, 1489 (1992).

    Article  Google Scholar 

  24. H. Zhu, R.S. Averback: Sintering of nano particle powders: Simulations and experiments. Mater. Manuf. Processes 11, 905 (1996).

    Article  CAS  Google Scholar 

  25. H. Zhu, R.S. Averback: Molecular dynamics simulations of densification processes in nanocrystalline materials. Mater. Sci. Eng. A 204, 96 (1995).

    Article  Google Scholar 

  26. J.R. Groza: Nanocrystalline powder consolidation method, in Nanostructured Materials—Processing, Properties and Potential Applications, edited by C.C. Koch (Noyes, New York, 2002), p. 116.

  27. M. Mayo: Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85 (1996).

    Article  CAS  Google Scholar 

  28. D.L. Bourell and J.R. Groza: Consolidation of ultrafine and nanocrystalline powder, in Powder Metal Technologies and Fabrication, ASM Handbook (ASM International, Metals Park, OH, 1998), p. 583.

    Google Scholar 

  29. R.A. Anderievski: Nanocrystalline high melting point compound-based materials. J. Mater. Sci. 29, 614 (1994).

    Article  Google Scholar 

  30. H. Zhu, R.S. Averback: Sintering process of two nanoparticles: A study by molecular dynamics simulations. Philos. Mag. Lett. 73, 27 (1996).

    Article  CAS  Google Scholar 

  31. R.S. Averback, H. Zhu, R. Tao, H.J. Hofler Sintering of nanocrystalline materials: Experiments and computer simulations, in Synthesis and Processing of Nanocrystalline Powder edited by D.L. Bourell (TMS, Warrendale, PA, 1996), p. 203.

  32. J.D. Hansen, R.P. Rusin, M.H. Teng, D.L. Johnson: Combinedstage sintering model. J. Am. Ceram. Soc. 75, 1129 (1992).

    Article  CAS  Google Scholar 

  33. M.Y. Efremov, S. Schiettekatte, M.E. Zhang, A. Olson, A.T. Kwan, R.S. Berry, L.H. Allen: Discrete periodic melting point observations for nanostructure ensembles. Phys. Rev. Lett. 85, 3560 (2000).

    Article  CAS  Google Scholar 

  34. G. Arlt, D. Hennings, G. de With: Dielectric properties of finegrained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Ganguli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanker, V., Ahmad, T., Ip, H. et al. Sintered compacts of nano and micron-sized BaTiO3: Dramatic influence on the microstructure and dielectric properties. Journal of Materials Research 21, 816–822 (2006). https://doi.org/10.1557/jmr.2006.0102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0102

Navigation