Skip to main content
Log in

Characterization of titanium dopants in sodium alanate by electron paramagnetic resonance spectroscopy

  • Article—Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) spectra were obtained for samples of Ti-doped NaAlH4 subjected to different numbers of cycles of dehydrogenation/re-hydrogenation. Ti is observed to evolve from its initial Ti(III) state through a series of Ti(0) species during the first 5 cycles. Although the conversion of Ti(III) to Ti(0) occurs much more readily for TiCl3-doped samples than those prepared with TiF3, in both cases the evolution of Ti follows the same sequence that involves 3 distinguishable Ti(0) species and ends in the predominance of the same single Ti(0) species. The spectrum of a sample of NaAlH4 containing 2 mol% of cubic Al3Ti is distinctly different than any of those observed for the Ti(0) species that arise during the hydrogen cycling of the hydride. The major changes in the nature of the predominant Ti species have little if any effect on the dehydrogenation kinetics, which strongly suggests that the profoundly enhanced hydrogen cycling kinetics of Ti-doped NaAlH4 are due to a Ti species present in only a relatively minor amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bogdanovic and M. Schwickardi: Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen-storage materials. J. Alloys Compd. 253 1 (1997).

    Article  Google Scholar 

  2. C.M. Jensen R. Zidan N. Mariels A. Hee and C. Hagen: Advanced titanium doping of sodium aluminum hydride: Segue to a practical hydrogen storage material?Int. J. Hydrogen Energy 24 461 (1999).

    Article  CAS  Google Scholar 

  3. R. Zidan S. Takara A. Hee and C. Jensen: Hydrogen cycling behavior of zirconium and titanium–zirconium-doped sodium aluminum hydride. J. Alloys Compd. 285 119 (1999).

    Article  CAS  Google Scholar 

  4. C.M. Jensen and R.A. Zidan: Hydrogen storage materials and method of making by dry homogenation. U.S. Patent No. 6 471 935 (2002).

    Google Scholar 

  5. B. Bogdanovic R. Brand A. Marjanovic M. Schwickardi and J. Tolle: Metal-doped sodium aluminium hydrides as potential new hydrogen-storage materials. J. Alloys Compd. 302 36 (2000).

    Article  CAS  Google Scholar 

  6. C.M. Jensen and K.J. Gross: Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material. Appl. Phys. A 72 213 (2001).

    Article  CAS  Google Scholar 

  7. B. Bogdanovic and M. Schwickardi: Ti-doped NaAlH4 as a hydrogen-storage material—Preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium powder. Appl. Phys. A 72 221 (2001).

    Article  CAS  Google Scholar 

  8. G. Sandrock K. Gross G. Thomas C. Jensen D. Meeker and S. Takara: Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage. J. Alloys Compd. 330–332 696 (2002).

    Article  Google Scholar 

  9. K.J. Gross G.J. Thomas and C.M. Jensen: Catalyzed alanates for hydrogen storage. J. Alloys Compd. 330–332 683 (2002).

    Article  Google Scholar 

  10. G. Sandrock K. Gross and G. Thomas: Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J. Alloys Compd. 339 299 (2002).

    Article  CAS  Google Scholar 

  11. M. Fichtner O. Fuhr O. Kircher and J. Rothe: Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. Nanotechnology 14 778 (2003).

    Article  CAS  Google Scholar 

  12. S.S. Srinivasan H.W. Brinks B.C. Hauback D. Sun and C.M. Jensen: Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors. J. Alloys Compd. 377 283 (2004).

    Article  CAS  Google Scholar 

  13. P. Wang and C.M. Jensen: Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off-the-shelf Ti powder. J. Phys. Chem. B 108 15829 (2004).

    Google Scholar 

  14. P. Wang and C.M. Jensen: Method for preparing Ti-doped NaAlH4 using Ti powder: Observation of an unusual reversible dehydrogenation behavior. J. Alloys Compd. 379 99 (2004).

    Article  CAS  Google Scholar 

  15. T. Ichikawa S. Isobe N. Hanada and H. Fujii: Lithium nitride for reversible hydrogen storage. J. Alloys Compd. 365 271 (2004).

    Article  CAS  Google Scholar 

  16. T. Ichikawa N. Hanada S. Isobe H. Leng and H. Fujii: Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J. Phys. Chem. B 108 7887 (2004).

    Article  CAS  Google Scholar 

  17. J. Vajo S. Skeith and F. Mertens: Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 109 3719 (2005).

    Article  CAS  Google Scholar 

  18. P. Bhattacharya P. Bellon R.S. Averback and S.J. Hales: Nanocrystalline TiAl powders synthesized by high-energy ball milling: Effects of milling parameters on yield and contamination. J. Alloys Compd. 368 187 (2004).

    Article  CAS  Google Scholar 

  19. J.L. Atwood G.K. Barker J. Holton W.E. Hunter M.F. Lappert and R. Pearce: Silylmethyl and related complexes. 5 metalhlocene bis(trimethylsilyl) methyls and benzyldryls of early transition metals [M(?5 - C5H5)2R] (M = Ti or V) and [M(?5 - C5H5)2(x)R] (M = Zr or Hf and x = Cl or R) and the crystal and molecular structures of [M(?5 - C5H5)2 (CHPh2)2] (m = Zr or Hf). J. Am. Chem. Soc. 99 6645 (1977).

    Article  CAS  Google Scholar 

  20. G. Corradi I.M. Zaritskii A. Hofstaetter K. Polgar and L.G. Rakitina: Ti3+ on Nb site: A paramagnetic Jahn–Teller center in vacuum-reduced LiNbO3:Mg:Ti single crystals. Phys. Rev. B: Cond. Mater. Mater. Phys. 58 8329 (1998).

    Article  CAS  Google Scholar 

  21. T.C. DeVore W. Weltner Jr.: Titanium difluoride and titanium trifluoride molecules: Electron spin resonance spectra in rare-gas matrices at 4 K. J. Am. Chem. Soc. 99 4700 (1977).

    Article  CAS  Google Scholar 

  22. V.V. Lagula M.D. Glinchuk R.O. Kuzian S.N. Nokhrin I.P. Bykov L. Jastrabik and J. Rosa: Electron spin resonance of Ti3+ in KTa0.9Nb0.1O3. Solid State Commun. 122 277 (2002).

    Article  Google Scholar 

  23. A.M. Prakash Sung-H.M. Suh M. Hyung and L. Kevan: Electron spin resonance evidence for isomorphous substitution of titanium into titanosilicate TiMCM-41 mesoporous molecular sieve. J. Phys. Chem. B 102 857 (1988).

    Article  Google Scholar 

  24. R.C. Wilson and R.J. Myers: Electron paramagnetic resonance spectrum and spin relaxation for Ti(H2O) in aqueous solution and in frozen glass. J. Chem. Phys. 64 2208 (1976).

    Article  CAS  Google Scholar 

  25. C.M. Andrei J. Walmsley H.W. Brinks R. Homestad S.S. Srinivasan C.M. Jensen and B.C. Hauback: Electron-microscopy studies of NaAlH4 with TiF3 additive: Hydrogen-cycling efffects. Appl. Phys. A 80 709 (2005).

    Article  CAS  Google Scholar 

  26. H.W. Brinks C.M. Jensen S.S. Srinivasan B.C. Hauback D. Blanchard and K. Murphy: Synchotron x-ray and neutron diffraction studies of NaAlH4 containing Ti additives. J. Alloys Compd. 376 215 (2003).

    Article  Google Scholar 

  27. J. Graetz J.J. Reily J. Johnson A.Y. Ingatov and T.A. Tyson: X-ray absorption study of Ti-activated sodium aluminum hydride. Appl. Phys. Lett. 85 500 (2004).

    Article  CAS  Google Scholar 

  28. A. Leon O. Kircher J. Rothe and M. Fichtner: Chemical state and local structure around Ti atoms in NaAlH4 doped with TiCl3 using x-ray absorption spectroscopy. J. Phys. Chem. B 108 16372 (2004).

    Article  CAS  Google Scholar 

  29. M. Felderhoff K. Klementiev W. Grunert B. Spliethoff B. Tesche J.M.B. von Colbe B. Bogdanovic M. Hartel A. Pommerin F. Schuth and C. Weidenthaler: Correlative TEM-EDX and XAFS studies of Ti-doped sodium alanate. Phys. Chem. Chem. Phys. 6 4369 (2004).

    Article  CAS  Google Scholar 

  30. D.L. Anton: Hydrogen desorption kinetics in transition metal modified NaAlH4. J. Alloys Compd. 356–357 400 (2003).

    Article  Google Scholar 

  31. C.M. Jensen M. Kuba M. Sulic K. Morales C. Brown W. Langley and T. Dalton: Catalytically enhanced hydrogen storage systems in Proceedings of the 2005 US DOE Hydrogen Annual Program Review, Washington DC May 2004 available at: http://www.hydrogen.energy.gov/pdfs/review05/st3_jensen.pdf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig M. Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuba, M.T., Eaton, S.S., Morales, C. et al. Characterization of titanium dopants in sodium alanate by electron paramagnetic resonance spectroscopy. Journal of Materials Research 20, 3265–3269 (2005). https://doi.org/10.1557/jmr.2005.0404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0404

Navigation