Skip to main content
Log in

Tailoring singlewalled carbon nanotubes for hydrogen storage

  • Articles—Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrogen isotherms on a variety of single-walled carbon nanotube (SWNT) samples were measured using a differential pressure adsorption apparatus, which provides highly accurate data. A number of these SWNT samples were modified by a non-destructive cutting process, which reduced the aspect ratio of the nanotube bundles by two orders of magnitude. There were no apparent differences in the microporosity of SWNT as a function of aspect ratio. The adsorption of helium on SWNT is shown to be non-negligible and results in artificially low hydrogen capacities using conventional adsorption methodology. With no accounting for helium adsorption, the hydrogen adsorption results show that cut and uncut SWNT have similar hydrogen capacities of <1 wt% at 25 °C and pressures up to 110 bar. However, an analysis of hydrogen capacity versus N2 Brunauer-Emmett-Teller surface area suggests that there is an enhanced heat of adsorption of hydrogen for SWNT versus activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hynek W. Fuller and J. Bentley: Hydrogen storage by carbon sorption. Int. J. Hydrogen Energy 22 601 (1997).

    Article  CAS  Google Scholar 

  2. A.C. Dillon K.M. Jones T.A. Bekkedahl C.H. Kiang D.S. Bethune and M.J. Heben: Storage of hydrogen in single-walled carbon nanotubes. Nature 386 377 (1997).

    Article  CAS  Google Scholar 

  3. A.C. Dillon and M.J. Heben: Hydrogen storage using carbon adsorbents: Past present and future. Appl. Phys. A 72 133 (2001).

    Article  CAS  Google Scholar 

  4. G.G. Tibbetts G.P. Meisner and C.H. Olk: Hydrogen storage capacity of carbon nanotubes filaments and vapor-grown fibers. Carbon 39 2291 (2001).

    Article  CAS  Google Scholar 

  5. H. Cheng G.P. Pez and A.C. Cooper: Mechanism of hydrogen sorption in single-walled carbon nanotubes. J. Am. Chem. Soc. 123 5845 (2001).

    Article  CAS  Google Scholar 

  6. M.K. Kostov H. Cheng A.C. Cooper and G.P. Pez: The influence of carbon curvature on molecular adsorptions in carbon-based materials: A force field approach. Phys. Rev. Lett. 89 146105 (2002).

    Article  CAS  Google Scholar 

  7. H. Cheng A.C. Cooper G.P. Pez M.K. Kostov P. Piotrowski and S.J. Stuart: Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Phys. Chem. B 109 3780 (2005).

    Article  CAS  Google Scholar 

  8. A. Kuznetsova J.T. Yates Jr. J. Liu and R.E. Smalley: Physical adsorption of xenon in open single walled carbon nanotubes: Observation of a quasi-one-dimensional confined Xe phase. J. Chem. Phys. 112 9590 (2000).

    Article  CAS  Google Scholar 

  9. S. Talapatra A.Z. Zambano S.E. Weber and A.D. Migone: Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Phys. Rev. Lett. 85 138 (2000).

    Article  CAS  Google Scholar 

  10. I.W. Chiang B.E. Brinson A.Y. Huang P.A. Willis M.J. Bronikowski J.L. Margrave R.E. Smalley and R.H. Hauge: Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 105 8297 (2001).

    Article  CAS  Google Scholar 

  11. K.L. Strong D.P. Anderson K. Lafdi and J.N. Kuhn: Purification process for single-wall carbon nanotubes. Carbon 41 1477 (2003).

    Article  CAS  Google Scholar 

  12. M.J. Heben A.C. Dillon T. Gennett J.L. Alleman P.A. Parilla K.M. Jones and G.L. Hornyak: Rapid room temperature high-density hydrogen adsorption on single-walled carbon nanotubes at atmospheric pressure assisted by a metal alloy in Nanotubes and Related Materials edited by A.M. Rao (Mater. Res. Soc. Symp. Proc. 633 Warrendale PA 2001) p. A9.1.

  13. M. Haluska M. Hulman M. Hirscher M. Becher M. Becher S. Roth I. Stepanek and P. Bernier: Hydrogen storage in mechanically treated single wall carbon nanotubes. Electron. Properties Molec. Nanostruct. CP591 603 (2001).

    Article  Google Scholar 

  14. M. O’Connell S.M. Bachilo C.B. Huffman V.C. Moore M.S. Strano E.H. Haroz K.L. Rialon P.J. Boul W.H. Noon C. Kittrell J. Ma R.H. Hauge R.B. Weisman and R.E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297 26 (2002).

    Article  Google Scholar 

  15. R.E. Smalley D. Colbert and H. Dai: Carbon nanotubes purified under oxidizing conditions after being made by using high mass energy beam of high mass atoms ultrasound or reflux. European Patent No. EP 1 375 460 A2 (2004).

    Google Scholar 

  16. J. Liu A.G. Rinzler H. Dai J.H. Hafner R.K. Bradley P.J. Boul A. Lu T. Iverson K. Shelimov C.B. Huffman F. Rodriquez-Macias Y.S. Shon T.R. Lee D.T. Colbert and R.E. Smalley: Fullerene pipes. Science 280 1253 (1998).

    Article  CAS  Google Scholar 

  17. S.H. Jeong O.J. Lee and K.H. Lee: Preparation of aligned carbon nanotubes with prescribed dimensions: Template synthesis and sonication cutting approach. Chem. Mater. 14 1859 (2002).

    Article  CAS  Google Scholar 

  18. Z. Gu R.H. Hauge R.E. Smalley and J.L. Margrave: Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2 1009 (2002).

    Article  CAS  Google Scholar 

  19. J.L. Margrave Z. Gu R.H. Hauge and R.E. Smalley: Method for cutting single-walled carbon nanotubes through fluorination. U.S. Patent No. 0 009 114 A1 (2004).

    Google Scholar 

  20. M. Green and L. Hodder: Opening and Filling Carbon Nanotubes: WO 96/09246 (1996).

    Google Scholar 

  21. S.C. Tsang Y.K. Chen P. Harris and M. Green: A simple chemical method of opening and filling carbon nanotubes. Nature 272 159 (1994).

    Article  Google Scholar 

  22. R.E. Smalley D.T. Colbert H. Dai J. Liu A.G. Rinzler J.H. Hafner K. Smith T. Guo P. Nikolaev and A. Thess: Method for Cutting Nanotubes. U.S. Patent No. 0 094 311 (2002).

    Google Scholar 

  23. G. Chambers C. Carroll G.F. Farrell A.B. Dalton M. McNamara M. Panhuis and H.J. Byrne: Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett. 3 843 (2003).

    Article  CAS  Google Scholar 

  24. N. Pierard A. Fonseca Z. Konya I. Williams Van G. Tendeloo and J.B. Nagy: Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335 1 (2001).

    Article  CAS  Google Scholar 

  25. K. Niesz A. Siska I. Vesselenyi K. Hernadi D. Mehn G. Galbacs Z. Konya and I. Kiricsi: Mechanical and chemical breaking of multiwalled carbon nanotubes. Catal. Today 76 3 (2002).

    Article  CAS  Google Scholar 

  26. I. Vesselenyi A. Siska D. Mehn K. Niesz Z. Konya J.B. Nagy and I. Kirics: Modification of multiwalled carbon nanotubes by different breaking processes. J. Physics IV France 12 107 (2002).

    Article  Google Scholar 

  27. I. Stepanek G. Maurin P. Bernier J. Gavillet and A. Loiseau: Cutting single wall carbon nanotubes in Amorphous and Nanostructured Carbon edited by J.P. Sullivan J. Robertson O. Zhao T.B. Allen and B.F. Coll (Mater. Res. Soc. Symp. Proc. 593 Warrendale PA 2000) p. 119.

    CAS  Google Scholar 

  28. G. Maurin I. Stepanek P. Bernier J.F. Colomer J.B. Nagy and F. Henn: Segmented and opened multi-walled carbon nanotubes. Carbon 39 1273 (2001).

    Article  CAS  Google Scholar 

  29. M. Zhang M. Yudasaka A. Koshio and S. Iijima: Effect of polymer and solvent on purification and cutting of single-wall carbon nanotubes. Chem. Phys. Lett. 349 25 (2001).

    Article  CAS  Google Scholar 

  30. M. Zhang M. Yudasaka A. Koshio and S. Iijima: Structure of single-wall carbon nanotubes purified and cut using polymer. Appl. Phys. A 74 7 (2002).

    Article  CAS  Google Scholar 

  31. J. Sloan J. Hammer Zwiefka-M. Sibley and M.L.H. Green: The opening and filling of single-walled carbon nanotubes. Chem. Commun. 3 347 (1998).

    Article  Google Scholar 

  32. J. Chen M.J. Dyer and M.F. Foo: Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 123 6201 (2001).

    Article  CAS  Google Scholar 

  33. R. Saito A. Jorio A.G.S. Filho G. Dresselhaus M.S. Dresselhaus A. Gruneis L.G. Canado and M.A. Pimenta: First and second order resonance Raman process in graphite and single-wall carbon nanotubes. Jpn. J. Appl. Phys. 41 4878 (2002).

    Article  CAS  Google Scholar 

  34. A.M. Rao E. Richter S. Bandow B. Chase P.C. Eklund K.A. Williams S. Fang K.R. Subbaswamy M. Menon A. Thess R.E. Smalley G. Dresselhaus and M.S. Dresselhaus: Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science 275 187 (1997).

    Article  CAS  Google Scholar 

  35. A.C. Dillon M. Yudasaka and M.S. Dresselhaus: Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J. Nanosci. Nanotechnol. 4 691 (2004).

    Article  CAS  Google Scholar 

  36. A.C. Dillon P.A. Parilla J.L. Alleman T. Gennett K.M. Jones and M.J. Heben: Systematic inclusion of defects in pure single-wall nanotubes and their effect on the Raman d-band. Chem. Phys. Lett. 401 522 (2005).

    Article  CAS  Google Scholar 

  37. A. Sieverts: Towards the knowledge of occlusions and diffusion of gases through metals. Z. Phys. Chem. 60 129 (1907).

    Article  Google Scholar 

  38. J. Zielinski M.C. Coe G.R. Nickel J.A. Romeo M.A.C. Cooper and G.P. Pez: High pressure sorption isotherms via differential pressure measurements. Langmuir (submitted 2005).

    Google Scholar 

  39. F. Dreisbach: Measurement of H2 adsorption on activated carbon rubotherm Präzisionsmeßtechnik GmbH Bochum Germany (2004 private communication).

    Google Scholar 

  40. Z. Li Z. Pan and S. Dai: Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. J. Colloid Surf. Sci. 277 35 (2004).

    Article  CAS  Google Scholar 

  41. F. Li Y. Wang D. Wang and F. Wei: Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 42 2375 (2004).

    Article  CAS  Google Scholar 

  42. A. Anson J. Jagiello J.B. Parra M.L. Sanjuan A.M. Benito W.K. Maser and M.T. Martinez: Porosity surface area surface energy and hydrogen adsorption in nanostructured carbons. J. Phys. Chem. B 108 15820 (2004).

    Article  CAS  Google Scholar 

  43. E. Poirier R. Chahine and T.K. Bose: Hydrogen adsorption in carbon nanostructures. Int. J. Hydrogen Energy 26 831 (2001).

    Article  CAS  Google Scholar 

  44. B.K. Pradhan A.R. Harutyunyan D. Stojkovic J.C. Grossman P. Zhang M.W. Cole V. Crespi H. Goto J. Fujiwara and P.C. Eklund: Large cryogenic storage of hydrogen in carbon nanotubes at low pressures. J. Mater. Res. 17 2209 (2002).

    Article  CAS  Google Scholar 

  45. H. Takagi H. Hatori Y. Soneda N. Yoshizawa and Y. Yamada: Adsorptive hydrogen storage in carbon and porous materials. Mater. Sci. Eng. B108 143 (2004).

    Article  CAS  Google Scholar 

  46. L. Schlapbach and A. Zuttel: Hydrogen-storage materials for mobile applications. Nature 414 353 (2001).

    Article  CAS  Google Scholar 

  47. E.L. Pace and A.R. Siebert: Heat of adsorption of parahydrogen and orthodeuterium on graphon. J. Phys. Chem. 63 1398 (1959).

    Article  CAS  Google Scholar 

  48. P. Malbrunot D. Vidal J. Vermesse R. Chahine and T.K. Bose: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13 539 (1997).

    Article  CAS  Google Scholar 

  49. S. Sircar: Gibbsian surface excess for gas adsorption—Revisited. Ind. Eng. Chem. Res. 38 3670 (1999).

    Article  CAS  Google Scholar 

  50. S. Sircar: Measurement of Gibbsian surface excess. AIChE J. 47 1169 (2001).

    Article  CAS  Google Scholar 

  51. C. Liu H. Yang Y. Tong H.T. Cong and H.M. Cheng: Volumetric hydrogen storage in single-walled carbon nanotubes. Appl. Phys. Lett. 80 2389 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, M.K., Zielinski, J.M., Dantsin, G. et al. Tailoring singlewalled carbon nanotubes for hydrogen storage. Journal of Materials Research 20, 3214–3223 (2005). https://doi.org/10.1557/jmr.2005.0398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0398

Navigation