Skip to main content
Log in

Modeling alkali alanates for hydrogen storage by density-functional band-structure calculations

  • Articles—Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The alanates (complex aluminohydrides) have relatively high gravimetric hydrogen density and are among the most promising solid-state hydrogen-storage materials. In this work, the crystal structure and electronic structure of pure and mixed-alkali alanates were calculated by ground-state density-functional band-structure calculations. The results are in excellent correspondence with available experimental data. The properties of the pure alanates were compared, and the relatively high stability of the Li3AlH6 phase was pointed out as an important difference that may explain the difficulty of hydrogenating lithium alanate. The alkali alanates are nonmetallic with calculated band gaps around 5 eV and 2.5-3 eV for the tetra- and hexahydrides. The bonding was identified as ionic between the alkali cations and the aluminohydride complexes, while it is polar covalent within the complex. A broad range of hypothetical mixed-alkali alanate compounds was simulated, and four were found to be stable compared to the pure alanates and each other: LiNa2AlH6, K2LiAlH6, K2NaAlH6, and K2.5Na0.5AlH6. No mixed-alkali tetrahydrides were found to be stable, and this was explained by the local coordination within the different compounds. The only alkali alanate that seemed to be close to fulfilling the international hydrogen density targets was NaAlH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Züttel: Materials for hydrogen storage. Mater. Today 6(9) 24 (2003).

    Article  Google Scholar 

  2. G. Sandrock R.C. Bowman Jr.: Gas-based hydride applications: Recent progress and future needs. J. Alloys Compd. 356–357,794 (2003).

    Article  CAS  Google Scholar 

  3. A. Züttel: Hydrogen storage methods. Naturwissenschaften 91 157 (2003).

    Article  CAS  Google Scholar 

  4. A.M. Seayad and D.M. Antonelli: Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Adv. Mater. 16 765 (2004).

    Article  CAS  Google Scholar 

  5. P.P.E.W. Grochala: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104 1283 (2004).

    Article  CAS  Google Scholar 

  6. F. Schüth B. Bogdanovic and M. Felderhoff: Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. 2249 (2004).

    Google Scholar 

  7. M. Conte P.P. Prosini and S. Passerini: Overview of energy/hydrogen storage: State-of-the-art of the technologies and prospects for nanomaterials. Mater. Sci. Eng. B (in press).

  8. B. Bogdanovic and M. Schwickardi: Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen-storage materials. J. Alloys Compd. 253 1 (1997).

    Article  Google Scholar 

  9. C.M. Jensen R. Zidan N. Mariels A. Hee and C. Hagen: Advanced titanium doping of sodium aluminum hydride: Segue to a practical hydrogen storage material?Int. J. Hydrogen Energy 24 461 (1999).

    Article  CAS  Google Scholar 

  10. A. Zaluska L. Zaluski and Ström-J.O. Olsen: Sodium alanates for reversible hydrogen storage. J. Alloys Compd. 298 125 (2000).

    Article  CAS  Google Scholar 

  11. K.J. Gross G.J. Thomas and C.M. Jensen: Catalyzed alanates for hydrogen storage. J. Alloy Compd. 330–332 683 (2002).

    Article  Google Scholar 

  12. G.P. Meisner G.G. Tibbetts F.E. Pinkerton C.H. Olk and M.P. Balogh: Enhancing low pressure hydrogen storage in sodium alanates. J. Alloys Compd. 337 254 (2002).

    Article  CAS  Google Scholar 

  13. M. Fichtner O. Fuhr O. Kircher and J. Rothe: Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. Nanotechnol. 14 778 (2003).

    Article  CAS  Google Scholar 

  14. T.N. Dymova D.P. Aleksandrov V.N. Konoplev T.A. Silina and A.S. Sizareva: Spontaneous and thermal decomposition of lithium tetrahydridoaluminate LiAlH4: The promoting effect of mechanochemical action on the process. Russ. J. Coord. Chem. 20 263 (1994).

    Google Scholar 

  15. T.N. Dymova V.N. Konoplev D.P. Aleksandrov A.S. Sizareva and T.A. Silina: A novel view of the nature of chemical- and phase-composition modifications in lithium hydridoaluminates LiAlH4 and Li3AlH6 on heating. Russ. J. Coord. Chem. 21 165 (1995).

    CAS  Google Scholar 

  16. N.N. Mal’tseva A.I. Golovanova T.N. Dymova and D.P. Aleksandrov: Russ. J. Inorg. Chem. 46 1793 (2001).

    Google Scholar 

  17. V.P. Balema K.W. Dennis and V.K. Pecharsky: Rapid solid-state transformation of tetrahedral [AlH4]- into octahedral [AlH6]3- in lithium aluminohydride. Chem. Commun. 1665 (2000).

    Google Scholar 

  18. V.P. Balema J.W. Wiench K.W. Dennis M. Pruski and V.K. Pecharsky: Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball milling. J. Alloys Compd. 329 108 (2001).

    Article  CAS  Google Scholar 

  19. J. Chen N. Kuriyama Q. Xu H.T. Takeshita and T. Sakai: Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. J. Phys. Chem. B 105 11214 (2001).

    Article  CAS  Google Scholar 

  20. B.C. Hauback H.W. Brinks and H. Fjellvåg: Accurate structure of LiAlD4 studied by combined powder neutron and x-ray diffraction. J. Alloys Compd. 346 184 (2002).

    Article  CAS  Google Scholar 

  21. H.W. Brinks and B.C. Hauback: The structure of Li3AlD6. J. Alloys Compd. 354 143 (2003).

    Article  CAS  Google Scholar 

  22. H.W. Brinks B.C. Hauback P. Norby and H. Fjellvåg: The decomposition of LiAlD4 studied by in-situ x-ray and neutron diffraction. J. Alloys Compd. 351 222 (2003).

    Article  CAS  Google Scholar 

  23. P. Vajeeston P. Ravindran R. Vidya H. Fjellvåg and A. Kjekshus: Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage. Phys. Rev. B 68 212101 (2003).

    Article  CAS  Google Scholar 

  24. P. Vajeeston P. Ravindran R. Vidya H. Fjellvåg and A. Kjekshus: Pressure-induced phase of NaAlH4: A potential candidate for hydrogen storage?Appl. Phys. Lett. 82 2257 (2003).

    Article  CAS  Google Scholar 

  25. O.M. Løvvik: Periodic band calculation on low index surfaces of crystalline LiAlH4. J. Alloys Compd. 356–357 178 (2003).

    Article  CAS  Google Scholar 

  26. S.C. Chung and H. Morioka: Thermochemistry and crystal structures of lithium sodium and potassium alanates as determined by ab initio simulations. J. Alloys. Compd. 372 92 (2004).

    Article  CAS  Google Scholar 

  27. D. Blanchard H.W. Brinks B.C. Hauback and P. Norby: Desorption of LiAlH4 with Ti- and V-based additives. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 108 54 (2004).

    Article  CAS  Google Scholar 

  28. P. Vajeeston P. Ravindran A. Kjekshus and H. Fjellvåg: Structural stability and electronic structure for Li3AlH6. Phys. Rev. B 69 020104 (2004).

    Article  CAS  Google Scholar 

  29. O.M. Løvvik S.M. Opalka H.W. Brinks and B.C. Hauback: Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6. Phys. Rev. B 69 134117 (2004).

    Article  CAS  Google Scholar 

  30. O.M. Løvvik: Adsorption of Ti on LiAlH4 surfaces studied by band-structure calculations. J. Alloys Compd. 373 28 (2004).

    Article  CAS  Google Scholar 

  31. O.M. Løvvik and O. Swang: Structure and stability of possible new alanates. Europhys. Lett. 607 607 (2004).

    Article  CAS  Google Scholar 

  32. O.M. Løvvik and O. Swang: Crystal structures and electronic structures of alkali aluminohexahydrides from density-functional calculations. J. Alloys Compd. (in press).

  33. J.K. Kang J.Y. Lee R.P. Muller and W.A. Goddard: Hydrogen storage in LiAlH4: Predictions of the crystal structures and reaction mechanisms of intermediate phases from quantum mechanics. J. Chem. Phys. 121 10623 (2004).

    Article  CAS  Google Scholar 

  34. C.M. Andrei J.C. Walmsley H.W. Brinks R. Holmestad S.S. Srinivasan C.M. Jensen and B.C. Hauback: Electron microscopy studies of lithium aluminium hydrides. J. Alloys Compd. (in press).

  35. H.W. Brinks A. Fossdal J.E. Fonneløp and B.C. Hauback: Crystal structure and stability of LiAlH4 with TiF3 additive. J. Alloys Compd. (in press).

  36. V.P. Balema V.K. Pecharsky and K.W. Dennis: Solid-state phase transformations in LiAlH4 during high-energy ball milling. J. Alloys Compd. 313 69 (2000).

    Article  CAS  Google Scholar 

  37. R.A. Zidan S. Takara A.G. Hee and C.M. Jensen: Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride. J. Alloys Compd. 285 119 (1999).

    Article  CAS  Google Scholar 

  38. B. Bogdanovic R.A. Brand A. Marjanovic M. Schwickardi and J. Tolle: Metal-doped sodium aluminium hydrides as potential new hydrogen-storage materials. J. Alloys Compd. 302 36 (2000).

    Article  CAS  Google Scholar 

  39. K.J. Gross S. Guthrie S. Takara and G.J. Thomas: In-situ x-ray diffraction study of the decomposition of NaAlH4. J. Alloys Compd. 297 270 (2000).

    Article  CAS  Google Scholar 

  40. A. Zaluska L. Zaluski and J.O. Ström-Olsen: Structure catalysis and atomic reactions on the atomic scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 72 157 (2001).

    Article  CAS  Google Scholar 

  41. C.M. Jensen and K.J. Gross: Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material. Appl. Phys. A 72 213 (2001).

    Article  CAS  Google Scholar 

  42. B. Bogdanovic and M. Schwickardi: Ti-doped NaAlH4 as a hydrogen-storage material–preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride. Appl. Phys. A 72 221 (2001).

    Article  CAS  Google Scholar 

  43. G.J. Thomas K.J. Gross N.Y.C. Yang and C.M. Jensen: Microstructural characterization of catalyzed NaAlH4. J. Alloys Compd. 330–332 702 (2002).

    Article  Google Scholar 

  44. G. Sandrock K.J. Gross G.J.T.C. Jensen D. Meeker and S. Takara: Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage. J. Alloys Compd. 330–332 696 (2002).

    Article  Google Scholar 

  45. D. Sun T. Kiyobayashi H.T. Takeshita N. Kuriyama and C.M. Jensen: X-ray diffraction studies of titanium and zirconium doped NaAlH4: Elucidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties. J. Alloys Compd. 337 L8 (2002).

    Article  CAS  Google Scholar 

  46. K.J. Gross G. Sandrock and G.J. Thomas: Dynamic in-situ x-ray diffraction of catalyzed alanates. J. Alloys Compd. 330–332 691 (2002).

    Article  Google Scholar 

  47. D.L. Anton: Hydrogen desorption kinetics in transition metal modified NaAlH4. J. Alloys Compd. 356–357 400 (2003).

    Article  CAS  Google Scholar 

  48. K.J. Gross E.H. Majzoub and S.W. Spangler: The effects of titanium precursors on hydriding properties of alanates. J. Alloys Compd. 356–357 423 (2003).

    Article  CAS  Google Scholar 

  49. M.P. Balogh G.G. Tibbetts F.E. Pinkerton G.P. Meisner and C.H. Olk: Phase changes and hyrogen release during decomposition of sodium alanates. J. Alloys Compd. 350 136 (2003).

    Article  CAS  Google Scholar 

  50. T. Kiyobayashi S.S. Srinivasan D. Sun and C.M. Jensen: Kinetic study and determination of the enthalpies of activation of the dehydrogenation of titanium- and zirconium-doped NaAlH4 and Na3AlH6. J. Phys. Chem. A 107 7671 (2003).

    Article  CAS  Google Scholar 

  51. D. Sun S.S. Srinivasan T. Kiyobayashi N. Kuriyama and C.M. Jensen: Rehydrogenation of dehydrogenated NaAlH4 at low temperature and pressure. J. Phys. Chem. B 107 10176 (2003).

    Article  CAS  Google Scholar 

  52. B. Bogdanovic M. Felderhoff M. Germann HäM. rtel A. Pommerin F. Schüth C. Weidenthaler and B. Zibrowius: Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by x-ray diffraction analysis (XRD) and solid-state NMR spectroscopy. J. Alloys Compd. 350 246 (2003).

    Article  CAS  Google Scholar 

  53. B. Bogdanovic M. Felderhoff S. Kaskel A. Pommerin K. Schlichte and F. Schüth: Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Adv. Mater. 15 1012 (2003).

    Article  CAS  Google Scholar 

  54. E.H. Majzoub and K.J. Gross: Titanium-halide catalyst-precursors in sodium aluminum hydrides. J. Alloys Compd. 356–357 363 (2003).

    Article  CAS  Google Scholar 

  55. C. Weidenthaler A. Pommerin M. Felderhoff B. Bogdanovic and F. Schüth: On the state of the titanium and zirconium in Ti- or Zr-doped NaAlH4 hydrogen storage material. Phys. Chem. Chem. Phys. 5 5149 (2003).

    Article  CAS  Google Scholar 

  56. M. Fichtner J. Engel O. Fuhr O. Kircher and O. Rubner: Nanocrystalline aluminium hydrides for hydrogen storage. Mater. Sci. Eng. B 108 42 (2004).

    Article  CAS  Google Scholar 

  57. O. Kircher and M. Fichtner: Hydrogen exchange kinetics in NaAlH4 catalyzed in different decomposition states. J. Appl. Phys. 95 7748 (2004).

    Article  CAS  Google Scholar 

  58. S.S. Srinivasan H.W. Brinks B.C. Hauback D. Sun and C.M. Jensen: Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors. J. Alloys Compd. 377 283 (2004).

    Article  CAS  Google Scholar 

  59. W. Luo and K.J. Gross: A kinetics model of hydrogen absorption and desorption in Ti-doped NaAlH4. J. Alloys Compd. 385 224 (2004).

    Article  CAS  Google Scholar 

  60. A. Léon O. Kircher J. Rothe and M. Fichtner: Chemical state and local structure around titanium atoms in NaAlH4 doped with TiCl3 using x-ray absorption spectroscopy. J. Phys. Chem. B 108 16372 (2004).

    Article  CAS  Google Scholar 

  61. V. Ozolins E.H. Majzoub and T.J. Udovic: Electronic structure and Rietveld refinement parameters of Ti-doped sodium alanates. J. Alloys Compd. 375 1 (2004).

    Article  CAS  Google Scholar 

  62. M. Felderhoff K. Klementiev W. Grünert B. Spliethoff B. Tesche J.M.B. von Colbe B. Bogdanovic M. Härtel A. Pommerin F. Schüth and C. Weidenthaler: Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate. Phys. Chem. Chem. Phys. 6 4369 (2004).

    Article  CAS  Google Scholar 

  63. H.W. Brinks C.M. Jensen S.S. Srinivasan B.C. Hauback D. Blanchard and K. Murphy: Synchrotron x-ray and neutron diffraction studies of NaAlH4 containing Ti additives. J. Alloys Compd. 376 215 (2004).

    Article  CAS  Google Scholar 

  64. D. Sun S.S. Srinivasan G. Chen and C.M. Jensen: Rehydrogenation and cycling studies of dehydrogenated NaAlH4. J. Alloys Compd. 373 265 (2004).

    Article  CAS  Google Scholar 

  65. R.T. Walters and J.H. Scogin: A reversible hydrogen storage mechanism for sodium alanate: The role of alanes and the catalytic effect of the dopant. J. Alloys Compd. 379 135 (2004).

    Article  CAS  Google Scholar 

  66. P. Wang and C.M. Jensen: Method for preparing Ti-doped NaAlH4 using Ti powder: Observation of an unusual reversible dehydrogenation behavior. J. Alloys Compd. 379 99 (2004).

    Article  CAS  Google Scholar 

  67. P. Wang and C.M. Jensen: Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off-the-shelf Ti powder. J. Phys. Chem. B 108 15827 (2004).

    Article  CAS  Google Scholar 

  68. J. Graetz J.J. Reilly J. Johnson A.Y. Ignatov and T.Y. Tyson: X-ray absorption study of Ti-activated sodium aluminum hydride. Appl. Phys. Lett. 85 500 (2004).

    Article  CAS  Google Scholar 

  69. J. Iniguez T. Yildirim T.J. Udovic M. Sulic and C.M. Jensen: Structure and hydrogen dynamics of pure and Ti-doped sodium alanate. Phys. Rev. B 70 060101 (2004).

    Article  CAS  Google Scholar 

  70. LøO.M. vvik and S.M. Opalka: Density-functional calculations of Ti-enhanced NaAlH4. Phys. Rev. B 71 054103 (2005).

    Article  CAS  Google Scholar 

  71. J. Wang A.D. Ebner T. Prozorov R. Zidan and J.A. Ritter: Effect of graphite as co-dopant on the dehydrogenation and hydrogenation kinetics of Ti-doped sodium aluminum hydride. J. Alloys Compd. (in press).

  72. J. Wang A.D. Ebner R. Zidan and J.A. Ritter: Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride. J. Alloys Compd. 391 245 (2005).

    Article  CAS  Google Scholar 

  73. S. Gomes G. Renaudin H. Hagemann K. Yvon M.P. Sulic and C.M. Jensen: Effects of milling doping and cycling of NaAlH4 studied by vibrational spectroscopy and x-ray diffraction. J. Alloys Compd 390 305 (2005).

    Article  CAS  Google Scholar 

  74. A.G. Haiduc H.A. Stil M.A. Schwarz P. Paulus and J.J.C. Geerlings: On the fate of the Ti catalyst during hydrogen cycling of sodium alanate. J. Alloys Compd. 393 252 (2005).

    Article  CAS  Google Scholar 

  75. E.H. Majzoub J.L. Herberg R. Stumpf S. Spangler and R.S. Maxwell: XRD and NMR investigation of Ti-compound formation in solution-doping of sodium aluminum hydrides: Solubility of Ti in NaAlH4 crystals grown in THF. J. Alloys Compd. (in press).

  76. M. Resana M.D. Hamptona J.K. Lomnessa and D.K. Slattery: Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4. Int. J. Hydrogen Energy (in press).

  77. C.M. Andrei J.C. Walmsley H.W. Brinks R. Holmestad S.S. Srinivasan C.M. Jensen and B.C. Hauback: Electron-microscopy studies of NaAlH4 with TiF3 additive: Hydrogen-cycling effects. Appl. Phys. A 80 709 (2005).

    Article  CAS  Google Scholar 

  78. S.M. Opalka and D.L. Anton: First principles study of sodium-aluminum-hydrogen phases. J. Alloys Comp. 356–357 486 (2003).

    Article  CAS  Google Scholar 

  79. A. Aguayo and D.J. Singh: Electronic structure of the complex hydride NaAlH4. Phys. Rev. B 69 155103 (2004).

    Article  CAS  Google Scholar 

  80. D.J. Ross M.D. Halls A.G. Nazro and R.F. Aroca: Raman scattering of complex sodium aluminimum hydride for hydogen storage. Chem. Phys. Lett. 388 430 (2004).

    Article  CAS  Google Scholar 

  81. M.E. de Dompablo Arroyoy and G. Ceder: First principles investigations of complex hydrides AMH4 and A3MH6 (A = Li Na K M=B Al Ga) as hydrogen storage systems. J. Alloys Compd. 364 6 (2004).

    Article  CAS  Google Scholar 

  82. A. Peles J.A. Alford Z. Ma L. Yang and M.Y. Chou: First-principles study of NaAlH4 and Na3AlH6 complex hydrides. Phys. Rev. B 70 165105 (2004).

    Article  CAS  Google Scholar 

  83. X. Ke and I. Tanaka: Decomposition reactions for NaAlH4 Na3AlH6 and NaH: First-principles study. Phys. Rev. B 71 024117 (2005).

    Article  CAS  Google Scholar 

  84. E.H. Majzoub K.F. McCarty and V. Ozolins: Lattice dynamics of NaAlH4 from high-temperature single-crystal Raman scattering and ab initio calculations: Evidence of highly stable AlH4- anions. Phys. Rev. B 71 024118 (2005).

    Article  CAS  Google Scholar 

  85. L. Hedin: New method for calculating 1-particle Greens function with application to electron-gas problem. Phys. Rev. 139 A796 (1965).

    Article  Google Scholar 

  86. M.S. Hybertsen and S.G. Louie: Electron correlation in semiconductors and insulators: Band-gaps and quasi-particle energies. Phys. Rev. B 34 5390 (1986).

    Article  CAS  Google Scholar 

  87. J.P. Bastide B. Bonnetot J.M. Letoffe and P. Claudy: Polymorphic transition of the trisodium hexahydroaluminate Na3AlH6. Mater. Res. Bull. 16 91 (1981).

    Article  CAS  Google Scholar 

  88. H. Morioka K. Kakizaki S.C. Chung and A. Yamada: Reversible hydrogen decomposition of KAlH4. J. Alloys Compd. 353 310 (2003).

    Article  CAS  Google Scholar 

  89. B.C. Hauback H.W. Brinks R.H. Heyn R. Blom and H. Fjellvåg: The crystal structure of KAlD4. J. Alloys Comps. (in press).

  90. P. Vajeeston P. Ravindran A. Kjekshus and FjellvåH. g: Crystal structure of KAlH4 from first principle calculations. J. Alloys Compd. 363 L7 (2004).

    Article  CAS  Google Scholar 

  91. P. Claudy B. Bonnetot J.P. Bastide and J-M. Létoffé: Reactions of lithium and sodium aluminium hydride with sodium or lithium hydride. Preparation of a new alumino-hydrode of lithium and sodium LiNa2AlH6. Mater. Res. Bull. 17 1499 (1982).

    Article  CAS  Google Scholar 

  92. L. Zaluski A. Zaluska and Ström-J.O. Olsen: Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis. J. Alloys Compd. 290 71 (1999).

    Article  CAS  Google Scholar 

  93. J. Huot S. Boily V. Guther and R. Schulz: Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying. J. Alloys Compd. 283 304 (1999).

    Article  CAS  Google Scholar 

  94. S. Opalka M. P. Saxe and O.M. Løvvik: Phonon calculations on the mixed-alkali phase LiNa2AlH6. (unpublished).

  95. H.W. Brinks (private communication).

  96. R. Genma H.H. Uchida N. Okada and Y. Nishi: Hydrogen reactivity of Li-containing hydrogen-storage materials. J. Alloys Compd. 356 358 (2003).

    Article  CAS  Google Scholar 

  97. N. Okada R. Genma Y. Nishi and H.H. Uchida: RE-oxide doped alkaline hydrogen-storage materials prepared by mechanical activation. J. Mater. Sci. 39 5503 (2004).

    Article  CAS  Google Scholar 

  98. J. Graetz Y. Lee J. Reilly J. S. Park and T. Vogt: Structure and thermodynamics of the mixed alkali alanates. (unpublished).

  99. J.P. Bastide P. Claudy J.M. Letoffe and J. Hajri El: Preparation and characterization of KAlH4. Rev. Chim. Miner. 24 248 (1987).

    CAS  Google Scholar 

  100. G. Kresse and J. Hafner: Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47 R558 (1993).

    Article  Google Scholar 

  101. G. Kresse and FurthmüJ. Iler: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 11169 (1996).

    Article  CAS  Google Scholar 

  102. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 1758 (1999).

    Article  CAS  Google Scholar 

  103. J.P. Perdew J.A. Chevary S.H. Vosko K.A. Jackson M.R. Pederson D.J. Singh and C. Fiolhais: Atoms molecules solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46 6671 (1992).

    Article  CAS  Google Scholar 

  104. G. te Velde and E.J. Baerends: Precise density-functional method for periodic structures. Phys. Rev. B 44 7888 (1991).

    Article  Google Scholar 

  105. G. te Velde and E.J. Baerends: Numerical integration of polyatomic systems. J. Comput. Phys. 99 84 (1992).

    Article  Google Scholar 

  106. E. Rönnebro D. Noreus K. Kadir A. Reiser and B. Bogdanovic: Investigation of the perovskite related structures of NaMgH3 NaMgF and Na3AlH6. J. Alloys Compd. 299 101 (2000).

    Article  Google Scholar 

  107. B.C. Hauback H.W. Brinks C.M. Jensen K. Murphy and A.J. Maeland: Neutron diffraction structure determination of NaAlD4. J. Alloys Compd. 358 142 (2003).

    Article  CAS  Google Scholar 

  108. R.D. Shannon: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32 751 (1976).

    Article  Google Scholar 

  109. WebElements Periodic table. http://www.webelements.com.

  110. B. Silvi and A. Savin: Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371 683 (1994).

    Article  CAS  Google Scholar 

  111. O.M. Løvvik: Predicted crystal structure of calcium alanate Ca(AlH4)2 from density-functional band-structure calculations. Phys. Rev. B (in press).

  112. International energy agency hydrogen program task 17. http://www.ieahia.org/tasks/task17.html.

  113. The United States Department of Energy Freedom CAR targets. http://www.hydrogen.energy.gov/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Martin Løvvik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Løvvik, O.M., Swang, O. & Opalka, S.M. Modeling alkali alanates for hydrogen storage by density-functional band-structure calculations. Journal of Materials Research 20, 3199–3213 (2005). https://doi.org/10.1557/jmr.2005.0397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0397

Navigation