Skip to main content
Log in

Plasticity size effects in nanoindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In conventional continuum mechanics, the yield behavior of a material is size independent. However, in nanoindentation, plasticity size effects have been observed for many years, where a higher hardness is measured for smaller indentation size. In this paper we show that there was a size effect in the initiation of plasticity, by using spherical indenters with different radii, and that the length scale at which the size effect became significant depended on the mechanism of plastic deformation. For yield by densification (fused silica), there was no size effect in the nanoindentation regime. For phase transition (silicon), the length scale was of the order tens of nanometers. For materials that deform by dislocations (InGaAs/InP), the length scale was of the order a micrometer, to provide the space required for a dislocation to operate. We show that these size effects are the result of yield initiating over a finite volume and predict the length scale over which each mechanism should become significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor, The Hardness of Metals (Clarendon Press, Oxford, 1951).

  2. D. Farkas, H. Kung, M. Mayo, H. van Swygenhoven, and J. Weertman, in Quasicrystals—Preparation, Properties and Applications, edited by E. Berlin-Ferré, P.P. Thiel, A.P. Tsai, and K. Urban (Mater. Res. Soc. Symp. Proc. 643, Warrendale, PA, 2001)

  3. A.J. Bushby and N.M. Jennett, in Fundamentals of Nanoindentation and Nantribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001).

  4. N. Gane and F.P. Bowden, J. Appl. Phys. 39, 1432 (1968).

    Article  CAS  Google Scholar 

  5. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wykobek, Acta Mater. 44, 3585, (1996).

    Article  CAS  Google Scholar 

  6. T.A. Michalske and J.E. Houston, Acta Mater. 46, 391 (1998).

    Article  CAS  Google Scholar 

  7. D.F. Bahr, D.E. Krammer, and W.W. Gerberich, Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  8. J.D. Kiely and J.E. Houston, Phys. Rev. B 57, 12588 (1998).

    Article  CAS  Google Scholar 

  9. W.W. Gerberich, D.E. Krammer, N.I. Tymiak, A.A. Volinsky, D.F. Bahr, and M.D. Kriese, Acta Mater. 47, 4115 (1999).

    Article  CAS  Google Scholar 

  10. W.D. Nix and H.J. Gao, Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  11. Y.Y. Lim and M.M. Chaudhri, Philos. Mag. A 79, 2979 (1999).

    Article  CAS  Google Scholar 

  12. Y.Y. Lim, A.J. Bushby, and M.M. Chaudhri in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998) p. 145.

  13. N.B. Jayaweera, J.R. Downes, M.D. Frogley, M. Hopkinson, A.J. Bushby, P. Kidd, A. Kelly, and D.J. Dunstan, Proc. Roy. Soc. London A 459, 2049 (2003).

    Article  CAS  Google Scholar 

  14. A.J. Bushby and N.M. Jennett, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q7.17.

  15. J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  16. A.J. Bushby, Nondestruct. Test. Eval. 17, 213 (2001).

    Article  Google Scholar 

  17. S.A. Syed Asif and J.B. Pethica, Philos. Mag. A 76, 1105 (1997).

    Article  CAS  Google Scholar 

  18. N.B. Jayaweera, A.J. Bushby, P. Kidd, A. Kelly, and D.J. Dunstan, Philos. Mag. Lett. 79, 343 (1999).

    Article  CAS  Google Scholar 

  19. D.J. Dunstan, J. Mater. Sci.: Mater. Electron. 8, 337 (1997).

    CAS  Google Scholar 

  20. J.S. Williams, Y. Chen, J. Wong-Leung, A. Kerr, and M.V. Swain, J. Mater. Res. 14, 2338 (1999).

    Article  CAS  Google Scholar 

  21. J.Z. Hu and I.L. Spain, Solid State Commun. 51, 263 (1984).

    Article  CAS  Google Scholar 

  22. B.A. Weinstein, S.K. Hark, R.D. Burnham, and R.M. Martin, Phys. Rev. Lett. 58, 781 (1987).

    Article  CAS  Google Scholar 

  23. D.J. Dunstan, A.D. Prins, B. Gil, and J-P. Faurie, Phys. Rev. B 44, 4017 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushby, A.J., Dunstan, D.J. Plasticity size effects in nanoindentation. Journal of Materials Research 19, 137–142 (2004). https://doi.org/10.1557/jmr.2004.19.1.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.137

Navigation