Skip to main content
Log in

Polarity-induced changes in the nanoindentation response of GaAs

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We studied the polarity-induced changes in the nanoindentation response of GaAs{111}. The nanoindentations were made under a large range of loads (Fmax between 0.2 mN and 50 mN) at room temperature on {111} faces of A (Ga) or B (As) character. The loading–unloading curves were compared first, with special attention addressed to pop-in events and hardness values (reported previously for microindentation). Transmission electron microscopy was used to observe the nanoindentation structures generated at the two polar surfaces. The size of the dense plastic zone generated around the indent site was found to increase linearly with √Fmax and similarly for both polar surfaces. The indentation rosettes possess a threefold symmetry with arms developed along the <110> directions parallel to the surface. Sizes were found to be very close for both polar surfaces and the entire load range. For an A-polar face, the rosette arms are constituted by two arms: a long arm (LA, α dislocations) and a short arm (β dislocations). At the B surface, only the LA (β dislocations) are formed. Furthermore, microtwinning was observed only for an A-polar face, similar to previous observations of anisotropic microtwinning at GaAs(001) surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Patriarche and E. Le Bourhis Philos. Mag. A 80, 2899 (2000).

    Article  CAS  Google Scholar 

  2. G. Patriarche, C. Mériadec, G. Le Roux, C. Deparis, I. Sagnes, J.C. Harmand, and F. Glas, Appl. Surf. Sci. 164, 15 (2000).

    Article  CAS  Google Scholar 

  3. P.B. Hirsch, P. Pirouz, S.G. Roberts, and P.D. Warren, Philos. Mag. A 52, 759 (1985).

    Article  CAS  Google Scholar 

  4. A. Rivière, B. Sieber, and J.P. Rivière, Microsc. Microanal. Microstruct. 2, 503 (1991).

    Article  Google Scholar 

  5. W.W. Gerberich, J.C. Nelson, E.T. Lilleoden, P. Anderson, and J.T. Wyrobek, Acta. Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  6. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe, Appl. Phys. Lett. 78, 3235 (2001).

    Article  CAS  Google Scholar 

  7. E. Le Bourhis, J.P. Rivière, and A. Zozime, J. Mater. Sci. 31, 6571 (1996).

    Article  Google Scholar 

  8. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris, J. Electron. Mater. 31, 958 (2002).

    Article  CAS  Google Scholar 

  9. E. Le Bourhis and G. Patriarche, Philos. Mag. Lett. 79, 805 (1999).

    Article  Google Scholar 

  10. E. Le Bourhis and G. Patriarche, Eur. Phys. J. Appl. Phys. 12, 31 (2000).

    Article  Google Scholar 

  11. D.B. Holt, J. Mater. Sci. 23, 1131 (1988).

    Article  CAS  Google Scholar 

  12. L. Largeau, G. Patriarche, E. Le Bourhis, A. Rivière, and J.P. Rivière, Philos. Mag. 83, 1653 (2003).

    Article  CAS  Google Scholar 

  13. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  14. A. George and J. Rabier, Rev. Phys. Appl. 22, 941 (1987).

    Article  CAS  Google Scholar 

  15. S.V. Hainsworth, A.J. Whitebread and T.F. Page, in Plastic Deformation of Ceramics, edited by R.C. Bradt, C.A. Brookes, and J.L. Toutbort (Plenum, New York, 1996), p 173.

  16. E. Le Bourhis and G. Patriarche, Phys. Status Solidi (a) 179, 153 (2000).

    Article  Google Scholar 

  17. S.A. Syed Asif and J.B. Pethica, Philos. Mag. A 76, 1105 (1997).

    Article  Google Scholar 

  18. A.B. Mann and J.B. Pethica, Philos. Mag. A 79, 577 (1999).

    Article  CAS  Google Scholar 

  19. T.F. Page, W.C. Oliver, and C.J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  20. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner, Phys. Rev. B 67, 172101 (2003).

    Article  Google Scholar 

  21. M.M. Chaudhri, Acta Mater. 46, 3047 (1998).

    Article  CAS  Google Scholar 

  22. L. Largeau, G. Patriarche, and E. Le Bourhis, J. Mater. Sci. Lett. 21, 401 (2002).

    Article  CAS  Google Scholar 

  23. I. Yonenaga, J. Phys III 7, 1435 (1997).

    CAS  Google Scholar 

  24. K.L. Johnson, in Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

  25. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich, Acta. Mater. 47, 333 (1999).

    Article  CAS  Google Scholar 

  26. Y.L. Chiu and A.W.H. Ngan, Acta Mater. 50, 2677 (2002).

    Article  CAS  Google Scholar 

  27. I. Yonenaga and T. Suzuki, Philos. Mag. Lett. 82, 535 (2002).

    Article  CAS  Google Scholar 

  28. C. Levade and G. Vanderschaeve, Phys. Status Solidi (a) 171, 83 (1999).

    Article  CAS  Google Scholar 

  29. S.J. Lloyd, J.M. Molina-Aldareguia, and W.J. Clegg, J. Mater. Res. 16, 3347 (2001).

    Article  CAS  Google Scholar 

  30. X.J. Ning, T. Perez, and P. Pirouz, Philos. Mag. A 72, 837 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Le Bourhis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bourhis, E., Patriarche, G., Largeau, L. et al. Polarity-induced changes in the nanoindentation response of GaAs. Journal of Materials Research 19, 131–136 (2004). https://doi.org/10.1557/jmr.2004.19.1.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.131

Navigation