Abstract
The Ti-Zr-Ni quasicrystal alloys have prospected to be one of the promising materials for hydrogen storage. This is because this type of quasicrystal contains 140 interstitial sites (T-sites) constituted in the Bergman Cluster that could accommodate hydrogen. The number of available sites is far greater than the number found in regular crystals, therefore the improvement of hydrogen storage capacity could be expected. For this study, we focus on the effect of substitution of Cr, in place of Ni in Ti-Zr-Ni amorphous and quasicrystal alloys. The studied samples are synthesized by the combination of mechanical alloying and sintering process. The subsequent measurements of electrochemical hydrogenation and dehydrogenation are carried out by a three-electrode cell at room temperature. The studied samples are structurally characterized by X-ray diffraction and their morphology is analyzed by scanning electron microscope and transmission electron microscope. The influence of the 4th substituted element on the possibility of a new-formed Cr quasicrystalline phase and the potential improvement of hydrogenation and dehydrogenation kinetics for both amorphous and quasicrystalline phase is evaluated. Our measurements showed the maximum discharge capacity achieved by Ti45Zr38Ni7Cr10 amorphous and Ti45Zr38Ni12Cr5 i-phase electrodes at a current density of 15 mA•g-1 to be 9.8 mAh•g-1and 55.2 mAh•g-1 respectively. The maximum estimated H/M value for the Ti45Zr38Ni12Cr5 i-phase electrode reached 1.36. These results are encouraging and show the merit of the usage of quasicrystals as hydrogen storage materials.
Similar content being viewed by others
References
J. Rena, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, “Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review”, International Journal of Hydrogen Energy, 42 (1) (2017) 289–311
J. Durbin, C.M. Jugroot, “Review of hydrogen storage techniques for on board vehicle applications”, International Journal of Hydrogen Energy, 38(34) (2013) 14595–14617
J.B.V. Colbea, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzikk, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsena, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, M. Dornheim, “Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives”, International Journal of Hydrogen Energy, 44(15) (2019) 7780–7808
M.V. Lototskyy, I. Tolja, L. Pickering, C. Sita, F. Barbir, V. Yartys, “The use of metal hydrides in fuel cell applications”, Progress in Natural Science: Materials International, 27(1) (2017), 3–20
S. Satyapal, “Hydrogen: A clean, flexible energy carrier”, Office of Energy Efficiency & Renewable Energy (2017), accessed on 08.12.19 https://www.hydrogen.energy.gov/pdfs/review18/01 satyapal_plenary2018amr.pdf
N.A.A. Rusman, M. Dahari, “A review on the current progress of metal hydrides material for solid-state hydrogen storage applications”, International Journal of Hydrogen Energy 41 (2016) 12108–12126
B. Sakintuna, F.L. Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, International Journal of Hydrogen Energy 32 (2007) 1121–1140
A. Takasaki, K.F. Kelton, “Hydrogen storage in Ti-based quasicrystals powders produced by mechanical alloying”, International Journal of Hydrogen Energy, 31 (2006) 183–190
R. M. Stroud, A. M. Viano, P. C. Gibbons, K. F. Kelton, and S. T. Misture, “Stable Ti-based quasicrystal offers prospect for improved hydrogen storage”, Appl. Phys. Lett. 69, (1996) 2998–3000
K. F. Kelton, W. J. Kim, R. M. Stroud, “A stable Ti-based quasicrystal”, Applied Physics Letters, 70, (1997) 3230–3232
S.H. Lee, J. Kim, “Structure and hydrogen absorption properties of Ti53Zr27Ni20(Pd, V) quasicrystals”, International Journal of Hydrogen Energy, 43 (2018) 19130–19140
H. Wen, W. Jianli, W. Lidong, W. Yaoming, W. Limin, “Electrochemical hydrogenation storage in (Ti1-xVx)2Ni (x = 0.05-0.3) alloys comprising icosahedral quasicrystalline phase”, Electrochimica Acta, 54 (2009) 2770–2773
P.C. Gibbons, K.F. Kelton. In: Z. M. Stadnik, editor. Physical properties of quasicrystals. Berlin: Springer, (1999) 403–431
Y. Lei, Y. Wu, Q. Yang, J. Wu, Q. Wang, “Electrochemical Behavior of Some Mechanically Alloyed Mg—Ni-Based Amorphous Hydrogen Storage Alloys”, Zeitschrift für Physikalische Chemie, Bd. 183 (1994) S. 379–384
A. Takasaki, W. Zając, T. Okuyama, J. S. Szmyd, “Electrochemical Hydrogenation of Ti45Zr38Ni17 Quasicrystal and Amorphous Powders produced by Mechanical Alloying”, Journal of the Electrochemical Society, 156 (7) (2009) A521-A526
B. Liu, Y. Wu, L. Wang, “Electrochemical properties of amorphous and icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powders”, Journal of Power Sources 159 (2006) 1458–1463
Y. Ariga, A. Takasaki, T. Kimijima, K. Świerczek, “Electrochemical properties of Yi49Zr26Ni25-xPdx (x = 0-6) quasicrystal electrodes produced by mechanical alloying”, Journal of Alloys and Compounds 645 (2015) S152-S154
D. Baster, A. Takasaki, C. Kuroda, E. Hanc, S.H. Lee, K. Swierczek, J.S. Szmyd, J. Y. Kim, J. Molenda, “Effect of mechanical milling on electrochemical properties of Ti Zr38 xNi17+x (x = 0, 8) quasicrystals produced by rapid-quenching” Journal of Alloys and Compounds 580 (2013) S238–S242
M. Balcerzak, “Electrochemical and structural studies on Ti-Zr-Ni and Ti-Zr-Ni-Pd alloys and composites”, Journal of Alloys and Compounds 658 (2016) 576–587
A. Zywczak, D. Shinya, L. Gondek, A. Takasaki, H. Figiel, “Hydriding of Ti45Zr38Ni17-xFex nanocompounds” Solid State Communications 150 (2010) 1–4
A. Takasaki, A. Zywczak, L. Gondek, H. Figiel, “Hydrogen Storage Characteristics of Ti45Zr38Ni17-xCox (x = 4, 8) alloy and quasicrystal powders produced by mechanical alloying”, Journal of Alloys and Compounds 580 (2013) S216-S218
J. Lina, F. Liang, Y. Wu, W. Liu, L. Wang, “Hydrogen storage properties of Ti1.4V0.6Ni + x Mg (x = 1-3, wt.%) alloys” International Journal of Hydrogen Energy, 39 (7) (2014) 3313–3319
W. Hu, L. Wang, L. Wang, “Quinary icosahedral quasicrystalline Ti-V-Ni-Mn-Cr alloy: A novel anode material for Ni-MH rechargeable batteries”, Materials Letters 65 (2011) 2868–2871
N. M. Cerón-Hurtado, M.R. Esquivel, “Stages of mechanical alloying during the synthesis of Sn-containing AB5-based intermetallics”, Conference: Hyfusen 2009–Tercer Congreso Nacional–Segundo Congreso Iberoamericano Hidrógeno Fuentes Sustentables de Energía (2009)
M. Balcerzak, “Hydrogenation study of nanostructured Ti-Zr-Ni alloys”, Journal of Energy Storage 8 (2016) 6–11
R.M. Stroud, K.F. Kelton, S.T. Misture, “High temperature x-ray and calorimetric studies of phase transformations in quasicrystalline Ti-Zr-Ni alloys”, J. Mater. Res., Vol. 12, No. 2, (1997)
P.A. Bancel, P.A. Heiney, P.W. Stephens, A.I. Goldman, P.M. Horn, Phys. Rev. Lett. 54 (1985) 2422–2425
A. Takasaki, V.T. Huett, K.F. Kelton, “High-pressure hydrogen loading in Ti45Zr38Ni17 amorphous and quasicrystal powders synthesized by mechanical alloying”, Materials Transactions, 43(8) (2002) 2165–2168
A.M. Viano, E.H. Majzoub, R.M. Stroud, M.J. Kramer, S.T. Misture, P.C. Gibbons, K.F. Kelton, Philos. Mag. A, 78, 131 (1998)
V. Elser, Phys. Rev. B, 32, (1985) 4892
D. Liu, Z. Zhao, T. Luo, C. Xing, L. Fei, J. Lin, J. Hou, D. Jiang, W. Liu, L. Wang, “Effect of LiH on electrochemical hydrogen storage properties of Ti55V10Ni35 quasicrystal”, Solid State Sciences 52 (2016) 19–22
W. Sun, T. Ohsuna, K. Hiraga, “Structural study of an Al–Ni–Ru decagonal quasicrystal with 1.6 nm periodicity and a related approximant phase”, Journal of Alloys and Compounds, 342 (1–2) (2002) 87–91
T. Tominaga, A. Takasaki, T. Shibato, K. Swierczek, “HREM observation and high-pressure composition isotherm measurement of Ti45Zr38Ni17 quasicrystal powders synthesized by mechanical alloying”, Journal of Alloys and Compounds 645 (2015) S292–S294
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Azuha, A.A., Klimkowicz, A. & Takasaki, A. Quaternary Quasicrystal Alloys for Hydrogen Storage Technology. MRS Advances 5, 1071–1083 (2020). https://doi.org/10.1557/adv.2020.96
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.96