Skip to main content

Advertisement

Log in

Quaternary Quasicrystal Alloys for Hydrogen Storage Technology

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The Ti-Zr-Ni quasicrystal alloys have prospected to be one of the promising materials for hydrogen storage. This is because this type of quasicrystal contains 140 interstitial sites (T-sites) constituted in the Bergman Cluster that could accommodate hydrogen. The number of available sites is far greater than the number found in regular crystals, therefore the improvement of hydrogen storage capacity could be expected. For this study, we focus on the effect of substitution of Cr, in place of Ni in Ti-Zr-Ni amorphous and quasicrystal alloys. The studied samples are synthesized by the combination of mechanical alloying and sintering process. The subsequent measurements of electrochemical hydrogenation and dehydrogenation are carried out by a three-electrode cell at room temperature. The studied samples are structurally characterized by X-ray diffraction and their morphology is analyzed by scanning electron microscope and transmission electron microscope. The influence of the 4th substituted element on the possibility of a new-formed Cr quasicrystalline phase and the potential improvement of hydrogenation and dehydrogenation kinetics for both amorphous and quasicrystalline phase is evaluated. Our measurements showed the maximum discharge capacity achieved by Ti45Zr38Ni7Cr10 amorphous and Ti45Zr38Ni12Cr5 i-phase electrodes at a current density of 15 mA•g-1 to be 9.8 mAh•g-1and 55.2 mAh•g-1 respectively. The maximum estimated H/M value for the Ti45Zr38Ni12Cr5 i-phase electrode reached 1.36. These results are encouraging and show the merit of the usage of quasicrystals as hydrogen storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rena, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, “Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review”, International Journal of Hydrogen Energy, 42 (1) (2017) 289–311

    Article  Google Scholar 

  2. J. Durbin, C.M. Jugroot, “Review of hydrogen storage techniques for on board vehicle applications”, International Journal of Hydrogen Energy, 38(34) (2013) 14595–14617

    Article  CAS  Google Scholar 

  3. J.B.V. Colbea, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzikk, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsena, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, M. Dornheim, “Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives”, International Journal of Hydrogen Energy, 44(15) (2019) 7780–7808

    Article  Google Scholar 

  4. M.V. Lototskyy, I. Tolja, L. Pickering, C. Sita, F. Barbir, V. Yartys, “The use of metal hydrides in fuel cell applications”, Progress in Natural Science: Materials International, 27(1) (2017), 3–20

    Article  CAS  Google Scholar 

  5. S. Satyapal, “Hydrogen: A clean, flexible energy carrier”, Office of Energy Efficiency & Renewable Energy (2017), accessed on 08.12.19 https://www.hydrogen.energy.gov/pdfs/review18/01 satyapal_plenary2018amr.pdf

    Google Scholar 

  6. N.A.A. Rusman, M. Dahari, “A review on the current progress of metal hydrides material for solid-state hydrogen storage applications”, International Journal of Hydrogen Energy 41 (2016) 12108–12126

    Article  CAS  Google Scholar 

  7. B. Sakintuna, F.L. Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, International Journal of Hydrogen Energy 32 (2007) 1121–1140

    Article  CAS  Google Scholar 

  8. A. Takasaki, K.F. Kelton, “Hydrogen storage in Ti-based quasicrystals powders produced by mechanical alloying”, International Journal of Hydrogen Energy, 31 (2006) 183–190

    Article  CAS  Google Scholar 

  9. R. M. Stroud, A. M. Viano, P. C. Gibbons, K. F. Kelton, and S. T. Misture, “Stable Ti-based quasicrystal offers prospect for improved hydrogen storage”, Appl. Phys. Lett. 69, (1996) 2998–3000

    Article  CAS  Google Scholar 

  10. K. F. Kelton, W. J. Kim, R. M. Stroud, “A stable Ti-based quasicrystal”, Applied Physics Letters, 70, (1997) 3230–3232

    Article  CAS  Google Scholar 

  11. S.H. Lee, J. Kim, “Structure and hydrogen absorption properties of Ti53Zr27Ni20(Pd, V) quasicrystals”, International Journal of Hydrogen Energy, 43 (2018) 19130–19140

    Article  CAS  Google Scholar 

  12. H. Wen, W. Jianli, W. Lidong, W. Yaoming, W. Limin, “Electrochemical hydrogenation storage in (Ti1-xVx)2Ni (x = 0.05-0.3) alloys comprising icosahedral quasicrystalline phase”, Electrochimica Acta, 54 (2009) 2770–2773

    Article  Google Scholar 

  13. P.C. Gibbons, K.F. Kelton. In: Z. M. Stadnik, editor. Physical properties of quasicrystals. Berlin: Springer, (1999) 403–431

  14. Y. Lei, Y. Wu, Q. Yang, J. Wu, Q. Wang, “Electrochemical Behavior of Some Mechanically Alloyed Mg—Ni-Based Amorphous Hydrogen Storage Alloys”, Zeitschrift für Physikalische Chemie, Bd. 183 (1994) S. 379–384

    Article  CAS  Google Scholar 

  15. A. Takasaki, W. Zając, T. Okuyama, J. S. Szmyd, “Electrochemical Hydrogenation of Ti45Zr38Ni17 Quasicrystal and Amorphous Powders produced by Mechanical Alloying”, Journal of the Electrochemical Society, 156 (7) (2009) A521-A526

    Google Scholar 

  16. B. Liu, Y. Wu, L. Wang, “Electrochemical properties of amorphous and icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powders”, Journal of Power Sources 159 (2006) 1458–1463

    Article  CAS  Google Scholar 

  17. Y. Ariga, A. Takasaki, T. Kimijima, K. Świerczek, “Electrochemical properties of Yi49Zr26Ni25-xPdx (x = 0-6) quasicrystal electrodes produced by mechanical alloying”, Journal of Alloys and Compounds 645 (2015) S152-S154

  18. D. Baster, A. Takasaki, C. Kuroda, E. Hanc, S.H. Lee, K. Swierczek, J.S. Szmyd, J. Y. Kim, J. Molenda, “Effect of mechanical milling on electrochemical properties of Ti Zr38 xNi17+x (x = 0, 8) quasicrystals produced by rapid-quenching” Journal of Alloys and Compounds 580 (2013) S238–S242

    Article  CAS  Google Scholar 

  19. M. Balcerzak, “Electrochemical and structural studies on Ti-Zr-Ni and Ti-Zr-Ni-Pd alloys and composites”, Journal of Alloys and Compounds 658 (2016) 576–587

    Article  CAS  Google Scholar 

  20. A. Zywczak, D. Shinya, L. Gondek, A. Takasaki, H. Figiel, “Hydriding of Ti45Zr38Ni17-xFex nanocompounds” Solid State Communications 150 (2010) 1–4

    Article  CAS  Google Scholar 

  21. A. Takasaki, A. Zywczak, L. Gondek, H. Figiel, “Hydrogen Storage Characteristics of Ti45Zr38Ni17-xCox (x = 4, 8) alloy and quasicrystal powders produced by mechanical alloying”, Journal of Alloys and Compounds 580 (2013) S216-S218

  22. J. Lina, F. Liang, Y. Wu, W. Liu, L. Wang, “Hydrogen storage properties of Ti1.4V0.6Ni + x Mg (x = 1-3, wt.%) alloys” International Journal of Hydrogen Energy, 39 (7) (2014) 3313–3319

    Article  Google Scholar 

  23. W. Hu, L. Wang, L. Wang, “Quinary icosahedral quasicrystalline Ti-V-Ni-Mn-Cr alloy: A novel anode material for Ni-MH rechargeable batteries”, Materials Letters 65 (2011) 2868–2871

    Article  CAS  Google Scholar 

  24. N. M. Cerón-Hurtado, M.R. Esquivel, “Stages of mechanical alloying during the synthesis of Sn-containing AB5-based intermetallics”, Conference: Hyfusen 2009–Tercer Congreso Nacional–Segundo Congreso Iberoamericano Hidrógeno Fuentes Sustentables de Energía (2009)

    Google Scholar 

  25. M. Balcerzak, “Hydrogenation study of nanostructured Ti-Zr-Ni alloys”, Journal of Energy Storage 8 (2016) 6–11

    Article  Google Scholar 

  26. R.M. Stroud, K.F. Kelton, S.T. Misture, “High temperature x-ray and calorimetric studies of phase transformations in quasicrystalline Ti-Zr-Ni alloys”, J. Mater. Res., Vol. 12, No. 2, (1997)

    Google Scholar 

  27. P.A. Bancel, P.A. Heiney, P.W. Stephens, A.I. Goldman, P.M. Horn, Phys. Rev. Lett. 54 (1985) 2422–2425

    Article  CAS  Google Scholar 

  28. A. Takasaki, V.T. Huett, K.F. Kelton, “High-pressure hydrogen loading in Ti45Zr38Ni17 amorphous and quasicrystal powders synthesized by mechanical alloying”, Materials Transactions, 43(8) (2002) 2165–2168

    Article  CAS  Google Scholar 

  29. A.M. Viano, E.H. Majzoub, R.M. Stroud, M.J. Kramer, S.T. Misture, P.C. Gibbons, K.F. Kelton, Philos. Mag. A, 78, 131 (1998)

    Article  CAS  Google Scholar 

  30. V. Elser, Phys. Rev. B, 32, (1985) 4892

    Article  CAS  Google Scholar 

  31. D. Liu, Z. Zhao, T. Luo, C. Xing, L. Fei, J. Lin, J. Hou, D. Jiang, W. Liu, L. Wang, “Effect of LiH on electrochemical hydrogen storage properties of Ti55V10Ni35 quasicrystal”, Solid State Sciences 52 (2016) 19–22

    Article  CAS  Google Scholar 

  32. W. Sun, T. Ohsuna, K. Hiraga, “Structural study of an Al–Ni–Ru decagonal quasicrystal with 1.6 nm periodicity and a related approximant phase”, Journal of Alloys and Compounds, 342 (1–2) (2002) 87–91

    Article  Google Scholar 

  33. T. Tominaga, A. Takasaki, T. Shibato, K. Swierczek, “HREM observation and high-pressure composition isotherm measurement of Ti45Zr38Ni17 quasicrystal powders synthesized by mechanical alloying”, Journal of Alloys and Compounds 645 (2015) S292–S294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Azraai Azuha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azuha, A.A., Klimkowicz, A. & Takasaki, A. Quaternary Quasicrystal Alloys for Hydrogen Storage Technology. MRS Advances 5, 1071–1083 (2020). https://doi.org/10.1557/adv.2020.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.96

Keywords

Navigation