Skip to main content
Log in

Study of the sorption and modelling of cesium by a Brazilian bentonite using PHREEQC

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

To estimate the cesium sorption by the bentonite and to obtain the isotherms, some batch-adsorption experiments are being carried out, being the Kd (retardation coefficient) calculated from these isotherms. One-dimensional flow cell was constructed to measure the bentonite permeability regarding to a cesium solution, which results will be used to evaluate the diffusion coefficient–D. It will be used the PHREEQC software to model the transport of the cesium radionuclide through this bentonite with the Kd and D data. The modelling of radionuclide transport in the Brazilian materials will contribute to evaluate the efficiency of multi-barriers system of the national repository, because it is one of its safety criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Atomic Energy Agency, ‘Scientific and technical basis for the near surface disposal of low and intermediate level waste’ , IAEA-Technical reports series-412, IAEA, Vienna (2002).

    Google Scholar 

  2. International Atomic Energy Agency, ‘Classification of radioactive waste. General Safety Guide’, IAEA-GSG-1, IAEA, Vienna, (2009).

    Google Scholar 

  3. International Atomic Energy Agency, ‘Selection of Technical Solutions for the Management of Radioactive Waste’, IAEA-TECDOC-1817, IAEA, Vienna (2017).

    Google Scholar 

  4. Ojovan, M.I., Lee, W. E., Introduction to Nuclear Waste Immobilisation (Second Edition), (Elsevier Science Publishers, 2014), pages. 321-335

    Google Scholar 

  5. Comissão Nacional de Energia Nuclear, ‘Seleção e escolha de locais para depósitos de rejeitos radioativos’, CNEN-NE-6.06, Resolution CNEN 014/89, CNEN, Rio de Janeiro, Brazil (1990).

    Google Scholar 

  6. Comissão Nacional de Energia Nuclear, ‘Critérios de aceitação para deposição de rejeitos radioativos de baixo e médio níveis de radiação’, CNEN-NN-6.09, Resolution CNEN 012/02, CNEN, Rio de Janeiro, Brazil (2002).

    Google Scholar 

  7. Comissão Nacional de Energia Nuclear, ‘Gerência de Rejeitos Radioativos de Baixo e Médio Níveis de Radiação’, CNEN-NN-8.01, Resolution CNEN 167/14, CNEN, Rio de Janeiro, Brazil (2014)

    Google Scholar 

  8. International Atomic Energy Agency, ‘Performance of engineered barrier materials in near surface disposal facilities for radioactive waste’, IAEA-TECDOC-1255, IAEA, Vienna (2001).

    Google Scholar 

  9. Comissão Nacional de Energia Nuclear. ‘Licenciamento de Depósitos de Rejeitos Radioativos de Baixo e Médio Níveis de Radiação’, CNEN-NN-8.02, Resolution CNEN 168/14. CNEN, Rio de Janeiro, Brazil, (2014).

  10. Olszewska W., Miśkiewicz, A.; Zakrzewska-Kołtuniewicz, G.; Lankof, L.; Pająk, L. “Multibarrier system preventing migration of radionuclides from radioactive waste repository.” Nukleonika, 60, 3, p. 557–563 (2015).

    Article  Google Scholar 

  11. Environmental Protection Agency, ‘Understanding Variation in Partition Coefficient, Kd, values, Volume 1, The Kd Model, Methods of Measurement, and Application of Chemical Reaction Codes’ , EPA 402-R-99-004A, EPA, Washington D.C, United States (1999).

    Google Scholar 

  12. Environmental Protection Agency, ‘Technical Resource Document: Batch-type Procedures for estimating soil adsorption of chemical’, EPA/530 SW-87-006-F, EPA, Washington D.C, United States (1992).

    Google Scholar 

  13. Bohnhoff, G. L.; Shackelford, C.D., “Hydraulic Conductivity of Chemically Modified Bentonites for Containment Barriers.” 7th International Congress on Environmental Geotechnics, At Melbourne, Australia, Nov. 2014.

    Google Scholar 

  14. Svensk Kärnbränslehantering A.B., ‘Models for Diffusion in Compacted Bentonite’, SKB TR-15-06, SKB, Stockholm (2016).

    Google Scholar 

  15. Departamento Nacional De Produção Mineral (DNPM): Sumário Mineral 2015 (2016). Available at: http://www.dnpm.gov.br/dnpm/sumarios/sumario-mineral-2015/view (accessed 18 September 2019)

    Google Scholar 

  16. Shackelford, C.D. “Laboratory diffusion testing for waste disposal - A review”. Journal of Contaminant Hydrology, 7, 3, p. 177–217 (1991).

    Article  CAS  Google Scholar 

  17. Associação Brasileira de Normas Técnicas. ‘Ensaio de Compactação - solo’, ABNT-NBR 7182:1986 Versão Corrigida: 1988, ABNT, Rio de Janeiro, Brazil (1986).

    Google Scholar 

  18. Parkhurst, D. L.; Appelo, C. A. J. ‘Description of Input and Examples for PHREEQC Version 3–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations’, Techniques and Methods 6–A43, Denver, U.S., (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Tello, C.C.O., dos Santos, D.M.M. & Teixeira, T.B. Study of the sorption and modelling of cesium by a Brazilian bentonite using PHREEQC. MRS Advances 5, 245–252 (2020). https://doi.org/10.1557/adv.2020.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.57

Navigation