Skip to main content
Log in

Spent fuel alteration model integrating processes of different time-scales

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A 1D reactive transport model has been implemented in iCP (interface COMSOL Multiphysics and PhreeqC) to assess the corrosion of Spent Fuel (SF), considered as homogeneous UO2(am,hyd) doped with Pd. The model couples: i) generation of water radiolysis species by alpha and beta radiation considering the complete water radiolysis system with the kinetic reactions involving: H+, OH-, O2, H2O2, H2, HO2-, HO2•, O•, O-, O2-, H•, •OH and e- ii) processes occurring in the spent fuel surface: oxidative dissolution reactions of UO2(am,hyd) and subsequent reduction of oxidized fuel, considering H2 activation by Pd, and iii) corrosion of Fe(s) in oxic and anoxic conditions. Process i) has been implemented in COMSOL and processes ii) and iii) have been implemented in PHREEQC with their kinetic constants being calibrated with different sets of experimental data published in the open literature. The model yields a UO2(am,hyd) dissolution rates similar to the values selected in safety assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, L., Beauregard, Y., Qin, Z., Rohani, S., Shoesmith, D. W. (2012). A model for the influence of steel corrosion products on nuclear fuel corrosion under permanent disposal conditions. Corrosion Science, 61, 83–91.

    Article  CAS  Google Scholar 

  2. Wu, L., Liu, N., Qin, Z., Shoesmith, D.W. (2014a). Modeling the radiolytic corrosion of fractured nuclear fuel under permanent disposal conditions. Journal of The Electrochemical Society, 161(8), E3259–E3266.

    Article  CAS  Google Scholar 

  3. Wu, L., Qin, Z., Shoesmith, D. W. (2014b). An improved model for the corrosion of used nuclear fuel inside a failed waste container under permanent disposal conditions. Corrosion Science, 84, 85–95.

    Article  CAS  Google Scholar 

  4. Jerden, J. L., Frey, K., Ebert, W. (2015). A multiphase interfacial model for the dissolution of spent nuclear fuel. Journal of Nuclear Materials, 462, 135–146.

    Article  CAS  Google Scholar 

  5. Odorowski, M., (2015). Etude de l’altération de la matrice (U,Pu)O2 du combustible irradié en conditions de stockage géologique: Approche expérimentale et modélisation géochimique. Doctoral Thesis.

    Google Scholar 

  6. Nardi, A., Idiart, A., Trinchero, P., de Vries, L. M., and J. Molinero (2014). Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry. Computers & Geosciences 69: 10–21.

    Article  CAS  Google Scholar 

  7. COMSOL Multiphysics, https://www.comsol.com/

  8. Parkhurst, D. L., and C. A. J. Appelo (2013) Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p.

    Google Scholar 

  9. Tian, Z., Jiang, S. B., Jia, X. (2017). Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU. Physics in Medicine & Biology, 62(8), 3081.

    Article  CAS  Google Scholar 

  10. Cera, E., Bruno, J., Duro, L., Eriksen, T. (2006). Experimental determination and chemical modelling of radiolytic processes at the spent fuel/wáter interface. SKB TR 06-07, Svensk Kärnbränslehantering AB.

    Google Scholar 

  11. Kelm, M., Bohnert, E. (2004) A kinetic model for the radiolysis of chloride brine, its sensitivity against model parameters and a comparison with experiments, Forschungszentreum Karlsruhe, FZKA 6977.

    Google Scholar 

  12. Eriksen, T. E., Jonsson, M., Merino, J. (2008). Modelling of time resolved and long contact time dissolution studies of spent nuclear fuel in 10 mM carbonate solution–a comparison between two different models and experimental data. Journal of Nuclear Materials, 375(3), 331–339

    Article  Google Scholar 

  13. Merino, J., Cera, E., Bruno, J., Quinones, J., Casas, I., Clarens, F., … & Martínez-Esparza, A. (2005). Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments. Journal of nuclear materials, 346(1), 40–47.

    Article  CAS  Google Scholar 

  14. Trummer, M., Nilsson, S., Jonsson, M. (2008). On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. Journal of Nuclear Materials, 378(1), 55–59.

    Google Scholar 

  15. ThermoChimie Database version 9b0. Andra thermodynamic database for performance assessment https://www.thermochimie-tdb.com/pages/version.php

  16. Bruno, J., Casas, I., Puigdomènech, I. (1991). The kinetics of dissolution of UO2 under reducing conditions and the influence of an oxidized surface layer (UO2+x): Application of a continuous flow-through reactor. Geochimica et Cosmochimica Acta, 55(3), 647–658.

    Article  CAS  Google Scholar 

  17. Zetterström Evins, L., Juhola, P., Vähänen, M. (Eds.) (2014). REDUPP Final Report. POSIVA report 2014-12.1. 128 pp. http://www.posiva.fi/files/3672/WR2014-12.1.pdf

    Google Scholar 

  18. Bruno, J., Merino, J., Tamayo, A., Ferry, C., Quiñones, J., Iglesias, E., Rodriguez Villagra, N., Nieto, J.M., Martínez-Esparza, A., Loida, A., Metz, V., Jonsson, M., Ekeroth, E. and Grambow, B. (2005) MICADO project EURATOM specific programme for research and training on nuclear energy, FINAL D3.1 Deliverable: Application of models to selected datasets, NUWASTE-2005/6-3.2.1.1-2

    Google Scholar 

  19. Féron, D., Crusset, D., Gras, J. M. (2008). Corrosion issues in nuclear waste disposal. Journal of Nuclear Materials, 379(1–3), 16–23.

    Article  Google Scholar 

  20. Andra Dossier 2005 Argile: Évaluation de la faisabilité du stockage géologique en formation argileuse. Document de synthèse. Andra, Paris.

  21. Martínez Esparza, A., Cuñado, M. A., Gago, J. A., Quiñones, J., Iglesias, E., Cobos, J., González de la Huebra, A., Cera, E., Merino, J., Bruno, J., de Pablo, J., Casas, I., Clarens, F., Giménez, J. (2005). Development of a Matrix Alteration Model (MAM), ENRESA PT-01-2005

    Google Scholar 

  22. Svensk Kärnbränslehantering AB (2010). Data report for safety assessment SR-Site. SKB TR-10-52.

    Google Scholar 

  23. POSIVA (2013). Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Models and Data for the Repository System 2012. POSIVA 2013-01

    Google Scholar 

  24. Johnson, L., (2014). A model for radionuclide release from spent UO2 and MOX fuel. NAB 13-37

    Google Scholar 

  25. NWMO (2015). Technical Program for Long-Term Management of Canada’s Used Nuclear Fuel–Annual Report 2014. NWMO TR-2015-01

    Google Scholar 

  26. AEA (2015). Preliminary Assessment of Geological Disposal System for Spent Fuel in Japan - First Progress Report on Direct Disposal. JAEA-Research, 2015–016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riba, O., Coene, E., Silva, O. et al. Spent fuel alteration model integrating processes of different time-scales. MRS Advances 5, 159–166 (2020). https://doi.org/10.1557/adv.2020.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.51

Navigation